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MQXF powering and protection strategy

Quench protection system includes
heaters and CLIQ to improve 

redundancy and effectiveness

 High Luminosity LHC inner triplets

 132.6 T/m gradient, 4.2/7.1 m long

 16.5 kA, ~12 T in the conductor

 Nb3Sn superconductor

 Quench protection is challenging
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Current change

Magnetic field 
change

Coupling losses 
(Heat)

QUENCH

Temperature rise

Patent EP13174323.9CLIQ (Coupling-Loss Induced Quench)
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MQXF quench protection studies

Studies
MQXFS1a-b-c
(1.2 m short 

model)

MQXFS3a-b 
(1.2 m short 

model)

MQXFPM1 
(4.0 m 
mirror)

Quench integral – oQH √ √

Quench integral – oQH+iQH ~ √

Quench integral – oQH+CLIQ √

QH delays √ √ √

QH min energy to quench √ √

CLIQ studies √

EE discharge (quench-back) √

Goal: Verify that the baseline quench protection system 
parameters are suitable for quench protection performance
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Outer layer heater delays

G. Chlachidze,
S. Stoynev (FNAL)

H. Bajas, S. Izquierdo 
Bermudez (CERN)

J. Muratore, P. 
Joshi (BNL)

High-field OL heaters
9-11 ms at Inom

Low-field OL heaters
14-19 ms at Inom
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Inner layer heater delays

G. Chlachidze,
S. Stoynev (FNAL)

H. Bajas, S. Izquierdo 
Bermudez (CERN)

J. Muratore, P. 
Joshi (BNL)

Long-term reliability not 
yet demonstrated

IL heaters
8-20 ms at Inom
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Heater minimum energy density to quench

G. Chlachidze,
S. Stoynev (FNAL)

J. Muratore, P. 
Joshi (BNL)

OL heaters deposit 
enough energy to 
quench at current 
≥1.5 kA

IL heaters deposit 
enough energy to 
quench at current 
>3-5 kA
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Initial current
CLIQ capacitance 

[mF]
CLIQ charging 

voltage [V]
CLIQ stored 
energy [kJ]

CLIQ stored energy per unit 
length wrt 7m baseline

Quench

3.3 kA

40 300 1.8 54%

40 400 3.2 96% X

80 100 0.4 12%

80 150 0.9 27%

80 300 3.6 108% X

80 400 6.4 192% X

4.9 kA

40 300 1.8 54%

40 400 3.2 96% X

80 200 1.6 48%

80 300 3.6 108% X

CLIQ studies – Energy to quench

G. Chlachidze,
S. Stoynev (FNAL)
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MQXFS1b – Two discharges at nominal current
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Quench protection performance

G. Chlachidze,
S. Stoynev (FNAL)

Note!
Heater performance are 
poorer than baseline
• Unavailability of some

I-QH strips (4oo8)
• Hardware limitations 

limited power density

Quench load due to 
detection + validation time
to be added
At nominal current ~4 MIIt

RRR
MQXFS1ab: 250, 105, 255, 135
MQXFS3ab: 140, 140, 140, 170

H. Bajas, S. Izquierdo 
Bermudez (CERN)

Calculated from triggering of 
quench protection system
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Comparison to LEDET simulation results

MQXFS1a-b MQXFS3a-b

Possible causes for the faster experimental discharges
• strain-dependency of the Nb3Sn critical current
• effect of the strand twist-pitch on the ohmic loss per unit length
• superconductor hysteretic loss (magnetization)
• temperature gradient within the conductor’s metal, epoxy, and insulation

G. Chlachidze,
S. Stoynev (FNAL)

H. Bajas, S. Izquierdo 
Bermudez (CERN)
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Conclusion & next steps
Latest MQXF quench protection studies
Two 1.2 m short model and one 4.0 m mirror magnets tested at FNAL, CERN, BNL.
With baseline quench protection parameters:
• HF O-QH: 9-11 ms delays at nominal current. Energy density sufficient to quench at 1.6 kA
• LF O-QH: 14-19 ms delays at nominal current. Energy density sufficient to quench at 1.6 kA
• I-QH: 8-20 ms delays at nominal current. Energy density sufficient to quench at ≥3-5 kA
• CLIQ: quench in <5 ms. Energy density sufficient to quench at ≥3 kA

→ Quench protection up to ultimate current successfully demonstrated
→ Baseline parameters offer satisfactory quench protection performance (fast quench 
initiation, redundancy, scalability, reproducibility)
→Long-term reliability of inner QH not yet demonstrated (failures, detachment)

Next MQXF quench protection studies
New 1.2 m short models and 4.0 m prototype magnet to be tested at BNL, CERN, FNAL.
Goal: Define the baseline for the quench protection system after quench protection studies on 
the first 4 m prototype magnet

Electro-magnetic and thermal modeling
→ LEDET model needs to be refined to reproduce faster than expected CLIQ discharge
Goal: Implement the identified potential sources of inaccuracy and validate the new model
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QUESTIONS?

E R a v a i o l i @ l b l . g o v

mailto:ERavaioli@lbl.gov
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MQXF powering and protection circuit
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LEDET (Lumped-Element Dynamic Electro-Thermal)

Validated on dipole (MB) and 
quadrupole (MQY, MQXC, 

HQ, MQXF) magnets
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LEDET model

All simulations presented today are 
performed with the LEDET 2D model

(Lumped-Element Dynamic Electro-Thermal)

The interaction between the superconducting magnet and the 
local coupling currents is modeled with an array of RL dissipative 

loops mutually coupled with the magnet self-inductance

Inter-filament 
coupling currents

Inter-strand 
coupling currents

Example: HL-LHC 12 T Nb3Sn 
quadrupole magnet (MQXF)
• 2x 16000 IFCL loops
• 400 ISCL loops

[1] E. Ravaioli, “CLIQ”, PhD thesis, 2015
[2] E. Ravaioli et al., Cryogenics 2016

Runs in 3 minutes!


