

Quench protection performance measurements in the first MQXF magnet models

E. Ravaioli (LBNL)

P. Joshi, J. Muratore (BNL)

H. Bajas, A. Fernandez Navarro, P. Ferracin, S. Izquierdo Bermudez, F. Rodriguez-Mateos, E. Todesco, and A. Verweij (CERN)

G. Ambrosio, G. Chlachidze, S. Stoynev (FNAL)

GL. Sabbi (LBNL)

MQXF powering and protection strategy

- → 132.6 T/m gradient, 4.2/7.1 m long
- \rightarrow 16.5 kA, ~12 T in the conductor
- $\rightarrow Nb_3Sn$ superconductor

→ Quench protection is challenging

120 11 10 80 40 Magnetic field [T] y [mm] -40 -80 -120 -120-80 40 80 120 -40x [mm]

Quench protection system includes heaters and CLIQ to improve redundancy and effectiveness

Heaters

MT25 - 30 August 2017

3

LARP

BERKELEY L

CLIQ (Coupling-Loss Induced Quench)

Patent EP13174323.9

Quench protection performance measurements in the first MQXF magnet models – E. Ravaioli et al.

LARP BERKELEY LAB

4

MQXF quench protection studies

Studies	MQXFS1a-b-c (1.2 m short model)	MQXFS3a-b (1.2 m short model)	MQXFPM1 (4.0 m mirror)
Quench integral – oQH	٧	٧	
Quench integral – oQH+iQH	~	٧	
Quench integral – oQH+CLIQ	٧		
QH delays	٧	٧	V
QH min energy to quench	٧		٧
CLIQ studies	٧		
EE discharge (quench-back)	٧		

<u>Goal</u>: Verify that the baseline quench protection system parameters are suitable for quench protection performance

5

Quench protection performance measurements in the first MQXF magnet models – E. Ravaioli et al.

MT25 - 30 August 2017

.....

BERKELEY

LARP

6

Quench protection performance measurements in the first MQXF magnet models - E. Ravaioli et al.

MT25 - 30 August 2017

Berkeley Lab

LARP

Heater minimum energy density to quench

AUP

Quench protection performance measurements in the first MQXF magnet models – E. Ravaioli et al.

rrrr

BERKELEY L

LARP

8

CLIQ studies – Energy to quench

Quench protection performance measurements in the first MQXF magnet models – E. Ravaioli et al.

MT25 - 30 August 2017

LARP

9

MQXFS1b – Two discharges at nominal current

Quench protection performance measurements in the first MQXF magnet models - E. Ravaioli et al.

Quench protection performance

Quench protection performance measurements in the first MQXF magnet models – E. Ravaioli et al.

MT25 - 30 August 2017

LARP

BERKI

Comparison to LEDET simulation results

Conclusion & next steps

Latest MQXF quench protection studies

Two 1.2 m short model and one 4.0 m mirror magnets tested at FNAL, CERN, BNL. With baseline quench protection parameters:

- HF O-QH: 9-11 ms delays at nominal current. Energy density sufficient to quench at 1.6 kA
- LF O-QH: 14-19 ms delays at nominal current. Energy density sufficient to quench at 1.6 kA
- I-QH: 8-20 ms delays at nominal current. Energy density sufficient to quench at ≥3-5 kA
- CLIQ: quench in <5 ms. Energy density sufficient to quench at \geq 3 kA
- \rightarrow Quench protection up to ultimate current successfully demonstrated
- → Baseline parameters offer satisfactory quench protection performance (fast quench initiation, redundancy, scalability, reproducibility)
- →Long-term reliability of inner QH not yet demonstrated (failures, detachment)

Next MQXF quench protection studies

New 1.2 m short models and 4.0 m prototype magnet to be tested at BNL, CERN, FNAL. <u>Goal</u>: Define the baseline for the quench protection system after quench protection studies on the first 4 m prototype magnet

Electro-magnetic and thermal modeling

→ LEDET model needs to be refined to reproduce faster than expected CLIQ discharge

Goal: Implement the identified potential sources of inaccuracy and validate the new model

QUESTIONS?

ERavaioli@lbl.gov

MQXF powering and protection circuit

LEDET (Lumped-Element Dynamic Electro-Thermal)

MT25 – 30 August 2017

US HL-LHC

AUP

LARP

BERKELEY LAB

LEDET model

The **interaction** between the superconducting magnet and the local coupling currents is modeled with an array of **RL dissipative loops mutually coupled** with the magnet self-inductance

Quench protection performance measurements in the first MQXF magnet models – E. Ravaioli et al.

