

LTS – HTS Hybrid Dipole Magnet Quench Protection System

Piyush N Joshi
Ramesh Gupta, William Sampson
Brookhaven National Laboratory, USA
August 30 2017

Introduction and Goals

- Protection of Hybrid magnet.
- Operation of hybrid magnet system presents unique challenge due to interaction between two coils powered separately.
- Develop fast and reliable quench detection.
- Develop very fast energy extraction system for each coil during quench.
- Develop fast data logger system to capture transient data during quench.
- Study cross coupling of energy during quench
- Test results of the system at 4.3K
- Oral presentation by Ramesh Gupta Or28-05 (10AM Th.) discussing trapped field, magnetization effects etc.

Hybrid Magnet

- LTS Outer coil: Two racetrack coils each with 100 turns of Nb₃Sn Rutherford cable. 10.2T at 10.8kA
- HTS insert coils:
 Two racetrack coils
 each with 35 turns of
 12mm ReBCO tape
 from ASC and total
 conductor length of
 about 100m.

Quench Protection System block diagram

Quench Detectors

HTS Quench detector :

- Low threshold and fast detection
- Novel technique uses counter to count successive half coil voltage difference samples above threshold up to validation time.
- If in between samples are below threshold, counter resets
- Threshold as low as 50mV and validation time as low as 5ms
- Total coil voltage minus Ldi/dt voltage compared to threshold
- Voltage tap signals sampled at 1kHz

LTS Quench detector:

- Digital system similar to HTS quench detector
- QD threshold of 125mV and validation time of 5ms
- Both detector share common hardware but control separate power supplies and energy extraction systems

Quench detector hardware

- Digital system based on National Instruments real time controller hardware and LabView programming language
- 16 channel, differential input, 16bit simultaneous sampling ADC modules. Model PXI 6123
- 8 channel optically isolated digital output to trigger fast logger, trigger energy extraction systems and shut off power supply

HTS quench voltage

Fast and Slow Data Logger

- NI Real Time PXIe controller
- 64 channels, differential input, 16 bit simultaneous sampling at 10kHz.
 Model PXIe 4300 ADC modules
- Small signal analog isolators from VeriVolt with Ch to Ch isolation of 1500V and Ch to ground isolation of 2000V
- 32 channel, differential input of 16bit multiplexed Analog to Digital converter
- Sampling frequency of 1kHz and three power line cycle filtering

LabView Software modules

- Power supply control program
- Instrumentation and cryogenic control program
- Quench Detection program
- Energy Extraction system monitoring and control
- Data capture and analysis
- ∫(I² dt) Calculations

BROOKHAVEN NATIONAL LABORATORY Superconducting Magnet Division

Energy Extraction system

- LTS energy extraction:
 - Triggered by 24kA IGBT switch
 - 66 m Ω dump resistor
 - Extraction time delay of 2ms
 - Details of this switch in Po4.09-12
- HTS energy extraction

 - -1Ω dump resistor
 - No delay
- Charging sequence
 - LTS brought up to operating current (8kA)
 - HTS is then ramped at slow ramp rate till quench
- Discharging sequence
 - At HTS quench, open the HTS EE switch instantly and command PS to turn OFF
 - LTS EE Switch opened after 3ms delay and heaters fired, PS turned OFF

Energy coupling during quench

LTS Current=6000A HTS Current at quench=741A

LTS coils should be operated with some margin below quench current

BROOKHAVEN NATIONAL LABORATORY

HTS quench current at different LTS current

Superconducting Magnet Division

Conclusions

- System performed as expected.
- Transient data gave very good insight on cross coupling of energy between HTS and LTS at quench.
- LTS has to be operated with some headroom in current.
- Established proven sequence of action to protect both coils irrespective of which quenches first.

Backup Slides