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2The Promise of using HTS in Magnets 2

• 20T+ dipole magnets are within reach:
• Extreme current density possible: 1050 A/mm2 in 20 T pp. magnetic field (Moore’s Law Applies)
• Operation at higher temperatures: Helium gas (20K?)
• High transverse pressure resistance: 400MPa+ (we need this)

Combined 39 kA @(4.2 K, 5 T, pp)
Estimated: 18 kA @(4.2 K, 20 T, pp)

Cable Specs for next Feather-M2.3-4 (this cable exists) 700 A/mm2 Block Coil Cross-Section



Fast Quench Protection
• With such high current densities and 

energies quench protection for 
accelerator sized magnets becomes a 
serious challenge …

• CLIQ and Heaters can NOT work!

• Two options are to be considered:
• No protection. Rely on the stability of the coil. 

• E3SPreSSO (this talk)
• External Energy Extraction Symbiotic Protection 

System for Series Operation

• What else? (a challenge for you perhaps?)
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4How E3SPreSSO Works I 4

E3SPreSSO 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃

Bi-Filar Wound
Switch

E3SPreSSO E3SPreSSO E3SPreSSO E3SPreSSO

• The main coil is split up into N sections each protected by 
its own E3SPreSSO unit, which is connected in series

• The E3SPreSSO unit is:
• A near-zero self-inductance superconducting circuit that 

can be turned normal (superconducting switch).
• Located outside the main magnetic field: 

• Robust and cheap Nb-Ti or MgB2

• Or with parallel resistor non-stabilized ReBCO tapes.

• Allows for protecting large- or string of HTS 
magnet(s) which previously did not exist yet

HTS HTS HTS HTS

Looks like fault 
current limiter



How E3SPreSSO Works II 5

E3SPreSSO E3SPreSSO E3SPreSSO E3SPreSSOHTS HTS HTS HTS

• Resistance is distributed: Energy Extraction is no longer limited by the insulation breakdown voltage
• Removes restriction on cable current -> Ramp-up still applies

Inductive
Voltages

Resistive
Voltages



The design and numerical analysis of 
E3SPreSSO requires some mathematics

6

To help with the design 
we created an excel 
sheet that runs the 

calculations (attached
here, feel free to use)
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Effective Material Properties 7

Ceff
keff ρeff

𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒(𝑇𝑇) = �
𝑖𝑖=1

𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚

𝑓𝑓𝑖𝑖𝑘𝑘𝑖𝑖 𝑇𝑇

𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒(𝑇𝑇) = �
𝑖𝑖=1

𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚

𝑓𝑓𝑖𝑖𝐶𝐶𝑝𝑝𝑖𝑖 𝑇𝑇

1
𝜌𝜌𝑒𝑒𝑒𝑒𝑒𝑒(𝑇𝑇) = �

𝑖𝑖=1

𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑖𝑖
𝜌𝜌𝑖𝑖(𝑇𝑇)

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃

Bi-Filar Wound
Switch

• Properties from CryoComp

• Effective Material Properties
• Heat capacity: 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒(𝑇𝑇)
• Thermal conductivity: 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒(𝑇𝑇)
• Resistivity: 𝜌𝜌𝑒𝑒𝑒𝑒𝑒𝑒 𝑇𝑇

• Effective Properties for switch
are indexed with s as:

• 𝐶𝐶𝑠𝑠(𝑇𝑇), 𝑘𝑘𝑠𝑠 𝑇𝑇 and 𝜌𝜌𝑠𝑠 𝑇𝑇
• For the parallel resistor with p



• Conservation of energy:

E3SPreSSO Unit Design Equations
• For the design we need to calculate:

• The length of the switch wire/cable: 𝑃𝑃𝑠𝑠
• The length of the parallel resistor (if any): 𝑃𝑃𝑝𝑝
• The area of the parallel resistor: 𝐴𝐴𝑝𝑝

8

𝐶𝐶𝑖𝑖𝑛𝑛𝑖𝑖𝑠𝑠 = �
𝑇𝑇0

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
𝐶𝐶𝑠𝑠(𝑇𝑇)𝑑𝑑𝑇𝑇

𝐸𝐸𝑠𝑠 =
𝑅𝑅𝑝𝑝 𝑇𝑇∗

𝑅𝑅𝑠𝑠 𝑇𝑇∗ + 𝑅𝑅𝑝𝑝 𝑇𝑇∗
𝐿𝐿𝐼𝐼02

2𝑁𝑁
= 𝑃𝑃𝑠𝑠𝐴𝐴𝑠𝑠𝐶𝐶𝑖𝑖𝑛𝑛𝑖𝑖𝑠𝑠

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃

Bi-Filar Wound
Switch

• Maximum voltage drop (Ohm’s law):

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚

𝐼𝐼0
= 𝑅𝑅𝐸𝐸 =

𝑅𝑅𝑠𝑠 𝑇𝑇∗ 𝑅𝑅𝑝𝑝 𝑇𝑇∗

𝑅𝑅𝑠𝑠 𝑇𝑇∗ + 𝑅𝑅𝑝𝑝 𝑇𝑇∗
Magnetic energy in 
system must fit in heat 
capacity of switch

𝑅𝑅𝑠𝑠 𝑇𝑇 =
𝜌𝜌𝑠𝑠 𝑇𝑇 𝑃𝑃𝑠𝑠
𝐴𝐴𝑠𝑠

𝑅𝑅𝑝𝑝 𝑇𝑇 =
𝜌𝜌𝑝𝑝 𝑇𝑇 𝑃𝑃𝑝𝑝
𝐴𝐴𝑝𝑝

• Resistance of parallel resistor and switch

2
3

• T* is the “switching” temperature at which 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
should be effectively achieved. This choice will 
be numerically verified.  

1

Energy per unit



Solving the Design Equations 9

𝑅𝑅𝑝𝑝 𝑇𝑇∗ =
−𝐼𝐼02𝐿𝐿𝜌𝜌𝑠𝑠 𝑇𝑇∗ 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐴𝐴𝑠𝑠 2𝐶𝐶𝑖𝑖𝑛𝑛𝑖𝑖𝐼𝐼0𝐿𝐿𝑁𝑁𝜌𝜌𝑠𝑠 𝑇𝑇∗ 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚

3

−𝐼𝐼03𝐿𝐿𝜌𝜌𝑠𝑠 𝑇𝑇∗ + 2𝐴𝐴𝑠𝑠2𝐶𝐶𝑖𝑖𝑛𝑛𝑖𝑖𝑠𝑠𝑁𝑁𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
𝑃𝑃𝑠𝑠 =

𝐼𝐼0𝐿𝐿𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚

2𝑁𝑁𝜌𝜌𝑖𝑖𝑚𝑚𝑝𝑝𝑒𝑒 𝑇𝑇∗ 𝐶𝐶𝑖𝑖𝑛𝑛𝑖𝑖𝑠𝑠

𝐴𝐴𝑝𝑝 =
𝐸𝐸𝑝𝑝𝜌𝜌𝑝𝑝(𝑇𝑇∗)
𝐶𝐶𝑖𝑖𝑛𝑛𝑖𝑖𝑝𝑝𝑅𝑅𝑝𝑝

𝐶𝐶𝑖𝑖𝑛𝑛𝑖𝑖𝑝𝑝 = �
𝑇𝑇0

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
𝐶𝐶𝑝𝑝(𝑇𝑇)𝑑𝑑𝑇𝑇

𝑃𝑃𝑝𝑝 =
𝐸𝐸𝑝𝑝𝑅𝑅𝑝𝑝 𝑇𝑇∗

𝐶𝐶𝑖𝑖𝑛𝑛𝑖𝑖𝑝𝑝𝑅𝑅𝑝𝑝

• Solution is achieved in two steps

• Solving Equations 1,2 and 3 for 𝑅𝑅𝑝𝑝 𝑇𝑇∗ and 𝑃𝑃𝑠𝑠 yields:

𝑃𝑃𝑠𝑠 Does not depend on 𝐴𝐴𝑠𝑠 meaning that 𝐴𝐴𝑠𝑠 can be traded off with 𝑅𝑅𝑝𝑝 𝑇𝑇∗

𝑃𝑃𝑠𝑠 =
𝐴𝐴𝑠𝑠𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚

𝐼𝐼0𝜌𝜌𝑠𝑠 𝑇𝑇∗
𝑅𝑅𝑝𝑝 = ∞

• Exception Case:
• When 𝐴𝐴𝑠𝑠 is (too) large, the 

temperature no longer reaches 
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚. A lower temperature 
design can still be achieved with:

• Conservation of energy for the parallel resistor is given as

• Which solves for 𝑃𝑃𝑝𝑝 and 𝐴𝐴𝑝𝑝 as  

𝐸𝐸𝑝𝑝 =
𝑅𝑅𝑠𝑠 𝑇𝑇∗

𝑅𝑅𝑠𝑠 𝑇𝑇∗ + 𝑅𝑅𝑝𝑝 𝑇𝑇∗
𝐿𝐿𝐼𝐼2

2𝑁𝑁
= 𝑃𝑃𝑝𝑝𝐴𝐴𝑝𝑝𝐶𝐶𝑖𝑖𝑛𝑛𝑖𝑖𝑝𝑝

• Do not use ->



20T Prototype Magnet Nb-Ti Switch (the original idea) 10

• Assuming our preliminary HTS 20T+ prototype design 900A/mm2

• Assuming 8 E3SPReSSO units with Nb-Ti cable and no parallel resistor

8 layers in coil

• The magnet:
• Bop = 20 T, 
• Iop = 12000 A
• L = 0.042 H (3 MJ)
• Top = 4.5 K
• 66% hastelloy, 1.3% 

silver, 26% copper, 
0.7% YBCO

• E3SPreSSO:
• N = 8, 
• Vmax = 1000 V
• Tmax = 250 K
• T* = 20 K
• 50% Cu, 50% Nb-Ti
• As = 22 mm2

• Result:
• 𝑃𝑃𝑠𝑠 > 5000 𝑚𝑚 per unit

• NOT GOOD!

8X



20T Prototype Magnet HTS Switch (evolution) 11

• Assuming our preliminary HTS 20T+ prototype design 900A/mm2

• Assuming 8 E3SPReSSO units with non-stabilized HTS switch 
stainless steel parallel resistor

8 layers in coil

• The magnet:
• Bop = 20 T, 
• Iop = 12000 A
• L = 0.042 H (3 MJ)
• Top = 20 K
• 66% hastelloy, 1.3% 

silver, 26% copper, 
0.7% YBCO

• E3SPreSSO:
• N = 8, Vmax = 1000 V
• Tmax = 250 K
• T* = 135 K
• 90% hastelloy, 1.8% 

silver, 0.9% YBCO
• As = 15 mm2

• Result:
• 𝑃𝑃𝑠𝑠 = 16.7 𝑚𝑚
• 𝐴𝐴𝑝𝑝 = 55.5 𝑚𝑚𝑚𝑚2

• 𝑃𝑃𝑝𝑝 = 11 𝑚𝑚

8X



Numerical Model 12

𝑑𝑑𝐼𝐼𝐸𝐸
𝑑𝑑𝑅𝑅

=
𝐿𝐿𝑟𝑟𝑅𝑅𝐸𝐸𝐼𝐼𝐸𝐸

−𝑀𝑀𝑟𝑟
2 + 𝐿𝐿𝑟𝑟𝐿𝐿

−
𝑀𝑀𝑟𝑟𝑅𝑅𝑟𝑟𝐼𝐼𝑟𝑟

−𝑀𝑀𝑟𝑟
2 + 𝐿𝐿𝑟𝑟𝐿𝐿

,

𝑑𝑑𝐼𝐼𝑟𝑟
𝑑𝑑𝑅𝑅

=
𝐿𝐿𝑅𝑅𝐸𝐸𝐼𝐼𝐸𝐸

−𝑀𝑀𝑟𝑟
2 + 𝐿𝐿𝑟𝑟𝐿𝐿

+
𝑀𝑀𝑟𝑟𝑅𝑅𝑟𝑟𝐼𝐼𝑟𝑟

−𝑀𝑀𝑟𝑟
2 + 𝐿𝐿𝑟𝑟𝐿𝐿

,

• Solving current in ICED ring 
and E3SPreSSO

• Current division between switch and 
parallel resistor

𝐼𝐼𝑠𝑠 =
𝑅𝑅𝑝𝑝 𝑇𝑇𝑝𝑝 𝐼𝐼𝐸𝐸

𝑅𝑅𝑝𝑝 𝑇𝑇𝑝𝑝 + 𝑅𝑅𝑠𝑠 𝑇𝑇𝑠𝑠
, 𝐼𝐼𝑝𝑝 =

𝑅𝑅𝑝𝑝 𝑇𝑇𝑝𝑝 𝐼𝐼𝐸𝐸
𝑅𝑅𝑝𝑝 𝑇𝑇𝑝𝑝 + 𝑅𝑅𝑠𝑠 𝑇𝑇𝑠𝑠

,

• Solving temperatures
• Temperature in parallel resistor, ICED ring, switch and main coil

𝑑𝑑𝑇𝑇𝑝𝑝
𝑑𝑑𝑅𝑅 =

𝜌𝜌𝑝𝑝 𝑇𝑇𝑝𝑝 𝐼𝐼𝑝𝑝2

𝐴𝐴𝑝𝑝2𝐶𝐶𝑝𝑝 𝑇𝑇𝑝𝑝
,

𝑑𝑑𝑇𝑇𝑠𝑠
𝑑𝑑𝑅𝑅 =

𝜌𝜌𝑠𝑠 𝑇𝑇𝑠𝑠 𝐼𝐼𝑠𝑠2

𝐴𝐴𝑠𝑠2𝐶𝐶𝑠𝑠 𝑇𝑇𝑠𝑠
,

𝑑𝑑𝑇𝑇𝑟𝑟
𝑑𝑑𝑅𝑅 =

𝜌𝜌𝑟𝑟 𝑇𝑇𝑟𝑟 𝐼𝐼𝑟𝑟2

𝐴𝐴𝑟𝑟2𝐶𝐶𝑟𝑟 𝑇𝑇𝑟𝑟
,

𝑑𝑑𝑇𝑇𝑚𝑚
𝑑𝑑𝑅𝑅 =

𝜌𝜌𝑚𝑚 𝑇𝑇𝑚𝑚 𝐼𝐼𝑚𝑚2

𝐴𝐴𝑚𝑚2 𝐶𝐶𝑚𝑚 𝑇𝑇𝑚𝑚
,

1

2

3

ICED rings

Inductively Coupled Energy 
Dissipation Rings (quenchback)

Feather-M2 Magnet

IE

Is

Ip

switch

parallel

coil



Numerical Analysis
• The numerical model is evaluated on 

the 20T magnet prototype
• The switch is activated after detection 

and delay time (see eq.)
• After the switch is activated most of 

the current is diverted to the parallel 
resistor

• Temperature of both switch and 
parallel resistor reach requested 200K

• ICED works as expected picking up 
half of the current in the main coil 
(about 40% of energy)

• Coil peak temperature is a 
comfortable 240K

• Energy absorbtion:

13
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𝑅𝑅𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠 =
𝑉𝑉𝑖𝑖𝑟𝑟𝑒𝑒𝑠𝑠𝑠𝐴𝐴𝑚𝑚

𝑉𝑉𝑛𝑛𝑛𝑛𝑝𝑝𝜌𝜌𝑚𝑚 𝑇𝑇𝑖𝑖 𝐼𝐼0
+ 𝑅𝑅𝑑𝑑𝑒𝑒𝑑𝑑𝑚𝑚𝑑𝑑

𝐼𝐼 = 𝐼𝐼0𝑃𝑃𝑒𝑒𝑒𝑒
𝑅𝑅
𝐿𝐿 𝑅𝑅Switch

Parallel
Resistor

ICED



Numerical Analysis Cases 14

LTS

HTS

• Performed numerical analysis on different cases 
with both

• LTS switch materials at operating temperature of 4.5K
• HTS switch materials at operating temperature of 20K

• Also added Inductively Coupled Energy Extraction 
(ICED quench-back) loops

Poisoned Copper



Numerical Analysis Results 15

• LTS Pure copper matrix - results in very long cables. Also slow 
switching due to strong temperature dependence of resistivity.

• LTS Poisoned copper matrix – very low quench energies contact 
with liquid helium recommended to increase stability

• HTS non-stabilized – very high switching energy and low 
propagation velocity cause it difficult to switch to normal 
despite absence of stabilizer.

LTS

HTS

Energy Distribution

fcoil fswitch fpar fring

• For HTS switch 
(case  6) most 
of the energy is 
dumped in the 
parallel resistor



Conclusion 16

• The GOOD:
• The E3SPreSSO provides a method for 

extracting energy for (string of) HTS magnets  
of any size which did not exist yet

• The E3SPreSSO can ramp-down faster than 
other systems by distributing its effective 
voltage over the circuit

• The BAD:
• For timely energy extraction for high current 

density coil 900A/mm2 many units are needed 
for case study 8 per meter coil

• Need extra joints to connect all the units
• Need quench heaters or CLIQ for all units
• Considering stability, to make this work reliably 

is going to be a serious challenge 

• Final Conclusion
• Only use E3SPreSSO if there is no alternatives
• Hopefully quenches in HTS can be timely 

detected also for higher current densities
• to be continued with Feather-M2.3-4 Feather-M2 Rendering



Thank You 
for your attention 
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