

Magnet Technology 2017, Amsterdam, Netherlands

E³**SPreSSO** A Fast Quench Protection System for High-Temperature Superconducting Magnets

J. van Nugteren, J. Murtomaki, J. Ruuskanen, G. Kirby, P. Hagen,

G. de Rijk, H. ten Kate, L. Bottura and L. Rossi

The Promise of using HTS in Magnets

• 20T+ dipole magnets are within reach:

- Extreme current density possible: 1050 A/mm² in 20 T pp. magnetic field (Moore's Law Applies)
- Operation at higher temperatures: Helium gas (20K?)
- High transverse pressure resistance: 400MPa+ (we need this)

Cable Specs for next Feather-M2.3-4 (this cable exists)

strand no.	77K/SF	Ic 4.2 K/5T	length (m)		
1	98	3050	29.2		
2	98	3050	29.2		
3	98	3050	27.1		
4	81	3100	29.2		
5	150	3097	27.4		
6	140	3237	28.3		
7	146	2304	25		
8	210	2935	28		
9	140	3237	28.3		
10	123	2709	30		
11	140	3237	28.3		
12	140	3237	28.6		
13	210	2935	28		

700 A/mm² Block Coil Cross-Section

Combined 39 kA @(4.2 K, 5 T, pp) Estimated: 18 kA @(4.2 K, 20 T, pp)

Fast Quench Protection

- With such high current densities and energies quench protection for accelerator sized magnets becomes a serious challenge ...
- CLIQ and Heaters can NOT work!
- Two options are to be considered:
 - No protection. Rely on the stability of the coil.

• E³SPreSSO (this talk)

- External Energy Extraction Symbiotic Protection System for Series Operation
- What else? (a challenge for you perhaps?)

How E³SPreSSO Works I

- The main coil is split up into N sections each protected by its own $E^3SPreSSO$ unit, which is connected in series
- The E3SPreSSO unit is:
 - A near-zero self-inductance superconducting circuit that can be turned normal (superconducting switch).
 - Located outside the main magnetic field:
 - Robust and cheap Nb-Ti or MgB₂
 - Or with parallel resistor non-stabilized **ReBCO** tapes.
- Allows for protecting large- or string of HTS magnet(s) which previously did not exist yet

How E³SPreSSO Works II

• Resistance is distributed: Energy Extraction is no longer limited by the insulation breakdown voltage

The design and numerical analysis of E³SPreSSO requires some mathematics

To help with the design we created an excel sheet that runs the calculations (attached here, feel free to use)

Microsoft Excel Worksheet

Effective Material Properties

- Properties from CryoComp
- Effective Material Properties
 - Heat capacity: $C_{eff}(T)$
 - Thermal conductivity: $k_{eff}(T)$
 - Resistivity: $\rho_{eff}(T)$
- Effective Properties for switch are indexed with s as:
 - $C_s(T)$, $k_s(T)$ and $\rho_s(T)$
- For the parallel resistor with **p**

300

350

E³SPreSSO Unit Design Equations

- For the design we need to calculate:
 - The length of the switch wire/cable: l_s
 - The length of the parallel resistor (if any): l_p
 - The area of the parallel resistor: A_p

• Conservation of energy:

Magnetic energy in system must fit in heat capacity of switch

$$\sum_{ints}^{T_{max}} = \int_{T_0}^{T_{max}} C_s(T) dT$$

$$E_{s} = \frac{R_{p}(T^{*})}{R_{s}(T^{*}) + R_{p}(T^{*})} \frac{LI_{0}^{2}}{2N} = \frac{l_{s}A_{s}C_{ints}}{l_{s}A_{s}C_{ints}}$$

• Maximum voltage drop (Ohm's law): $\frac{V_{max}}{I_0} = R_E = \frac{R_s(T^*)R_p(T^*)}{R_s(T^*) + R_p(T^*)}$ 3

• **T*** is the "switching" temperature at which *V_{max}* should be effectively achieved. This choice will be numerically verified.

Solving the Design Equations

- Solution is achieved in two steps
- Solving Equations 1,2 and 3 for $R_p(T^*)$ and l_s yields:

$$R_{p}(T^{*}) = \frac{-I_{0}^{2}L\rho_{s}(T^{*})V_{max} - A_{s}\sqrt{2C_{int}I_{0}LN\rho_{s}(T^{*})V_{max}^{3}}}{-I_{0}^{3}L\rho_{s}(T^{*}) + 2A_{s}^{2}C_{ints}NV_{max}}$$

$$s = \sqrt{\frac{I_0 L V_{max}}{2 N \rho_{tape}(T^*) C_{ints}}}$$

 l_s Does not depend on A_s meaning that A_s can be traded off with $R_p(T^*)$

- Exception Case:
 - When *A_s* is (too) large, the temperature no longer reaches T_{max} . A lower temperature design can still be achieved with:

$$l_s = \frac{A_s V_{max}}{I_0 \rho_s(T^*)} \qquad R_p = \infty$$

Do not use ->

- Conservation of energy for the parallel resistor is given as $E_p = \frac{R_s(T^*)}{R_s(T^*) + R_p(T^*)} \frac{LI^2}{2N} = l_p A_p C_{intp}$ $C_{intp} = \int_{T_0}^{T_{max}} C_p(T) dT$
- Which solves for l_p and A_p as

$$\boldsymbol{A_p} = \sqrt{\frac{E_p \rho_p(T^*)}{C_{intp} R_p}} \qquad \boldsymbol{l_p} = \sqrt{\frac{E_p R_p(T^*)}{C_{intp} R_p}}$$

20T Prototype Magnet Nb-Ti Switch (the original idea)

- Assuming our preliminary HTS 20T+ prototype design 900A/mm²
- Assuming 8 E3SPReSSO units with Nb-Ti cable and no parallel resistor

- The magnet:
 - $B_{op} = 20 \text{ T},$
 - $I_{op} = 12000 \text{ A}$
 - L = 0.042 H (3 MJ)
 - $T_{op} = 4.5 \text{ K}$
 - 66% hastelloy, 1.3% silver, 26% copper, 0.7% YBCO
 - E3SPreSSO:
 - N = 8,
 - $V_{max} = 1000 V$
 - $T_{max} = 250 \text{ K}$
 - $T^* = 20 K$
 - 50% Cu, 50% Nb-Ti
 - $A_s = 22 \text{ mm}^2$
- Result:
 - *l_s* > 5000 *m per unit*
 - NOT GOOD!

20T Prototype Magnet HTS Switch (evolution)

- Assuming our preliminary HTS 20T+ prototype design 900A/mm²
- Assuming 8 E3SPReSSO units with non-stabilized HTS switch stainless steel parallel resistor

- The magnet:
 - Bop = 20 T,
 - Iop = 12000 A
 - L = 0.042 H (3 MJ)
 - Top = 20 K
 - 66% hastelloy, 1.3% silver, 26% copper, 0.7% YBCO
- E3SPreSSO:
 - N = 8, Vmax = 1000 V
 - Tmax = 250 K
 - $T^* = 135 \text{ K}$
 - 90% hastelloy, 1.8% silver, 0.9% YBCO
 - $As = 15 \text{ mm}^2$
- Result:
 - $l_s = 16.7 m$
 - $A_p = 55.5 \ mm^2$
 - $l_p = 11 m$

Numerical Model

Numerical Analysis

- The numerical model is evaluated on the 20T magnet prototype
- The switch is activated after detection and delay time (see eq.)
- After the switch is activated most of the current is diverted to the parallel resistor
- Temperature of both switch and parallel resistor reach requested 200K
- ICED works as expected picking up half of the current in the main coil (about 40% of energy)
- Coil peak temperature is a comfortable 240K
- Energy absorbtion:

TABLE II

USED FRACTION OF MATERIAL USED FOR THE CONDUCTOR OF THE MAIN COIL AND FOR THE DIFFERENT OPTIONS FOR THE SWITCH. AS WELL AS THE ASSUMED VALUES FOR THE OPERATING TEMPERATURE AND RELEVANT TEMPERATURES.

Case	Nb-Ti	MgB ₂	ReBCO	Cu	Cu	Ag	StSt	Cu-Ni	Cu-Zn	other	A_m/A_s	Top	T_{cs}	T_t	T_c	T^*
		_		RRR20	RRR100	99%	304	70-30	90-10		$[mm^2]$	[K]	[K]	[K]	[K]	[K]
1	80%			-	20%	-	-	-	-	-	15	4.5	7.0	8.5	10	50
2	94.5%	ТТС		-	5.5%	-	-	-	-	Doie	onod (oor	8.5	10	50
3	49%			-	-	-	-	-	51%	L OIS	soneu v	Cobl	Jei	8.5	10	50
4	30%	-	-	-	-	-	-	70%	-	-	15	4.5	7.0	8.5	10	50
5).6%	-	-	-	-	-	54.470	-	-	15	20	30	35	40	100
6	HT	S	0.91%	-	-	-	90.9%	-	-	8.1%	6.6	20	50	71.5	93	100
7			0.91%	-	-	1.8%	90.9%	-	-	6.3%	6.6	20	50	71.5	93	100
coil	-	-	0.66%	26.6%	-	1.33%	66.6%	-	-	4.6%	13.3	20	40	62.5	85	-
parR	-	-	-	-	-	-	100%	-	-	-	-	*	-	-	-	-
ring	-	-	-	100%	-	-	-	-	-	-	-	20	-	-	-	-

* Same operating temperature as the switch.

- Performed numerical analysis on different cases with both
 - LTS switch materials at operating temperature of 4.5K
 - HTS switch materials at operating temperature of 20K
- Also added Inductively Coupled Energy Extraction (ICED quench-back) loops

TABLE III

CALCULATED VALUES FOR THE DESIGN VARIABLES AS WELL AS THE RESULTS OF THE ANALYTICAL AND NUMERICAL ANALYSIS OF THE DESIGNS.

	peratures	energy distribution		
$\ell_s = R_p(T^*) = R_E(T^*) = \ell_p = A_p = \ell_{mpz} = E_{MQE}^{\dagger} = V_{nzp} = E_{sa,Tcs} = E_{sa,Tt} = T_m = T_s$	$T_p T_r$	$E_s E_p E_r$		
$ [m] [m\Omega] [m\Omega] [m] [mm^2] [\mu m] [\mu J] [m/s] [mJ] [mJ] [K] [K] $	[K] [K]	[%] [%] [%]		
1 $375 \sim 84$ n.a. n.a. 2000 1000 13.5 121 195 355 59.8	168 192	64 0 36		
2 TTC 84 n.a. n.a. 550 320 12.05 11.9 19.0 243 168	222 226	53 0 47		
3 84 n.a. n.a. 44 20 22.0 7.3 11.8 224 185	197 199	61 0 39		
4 9.5 122 263 8.67 35 8 4.6 29.9 3.2 5.0 239 201	190 193	22 41 37		
5 317 8.67 38 16 960 0.63 255 485 240 201	191 195	18 45 37		
6 - 5 771 8.67 45 19 3980 0.41 552 1617 238 209	192 195	8 55 37		
7 457 8.67 41.7 64 13500 0.27 947 2762 242 208	192 196	13 50 37		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

† MQE is defined in the multi-strand regime of the cable [22].

- LTS Pure copper matrix results in very long cables. Also slow switching due to strong temperature dependence of resistivity.
- LTS Poisoned copper matrix very low quench energies contact with liquid helium recommended to increase stability
- HTS non-stabilized very high switching energy and low propagation velocity cause it difficult to switch to normal despite absence of stabilizer.

• For HTS switch (case 6) most of the energy is dumped in the parallel resistor

Energy Distribution

■ fcoil ■ fswitch ■ fpar ■ fring

Conclusion

• The GOOD:

- The E³SPreSSO provides a method for extracting energy for (string of) HTS magnets of any size which did not exist yet
- The E³SPreSSO can ramp-down faster than other systems by distributing its effective voltage over the circuit

• The BAD:

- For timely energy extraction for high current density coil 900A/mm² many units are needed for case study 8 per meter coil
- Need extra joints to connect all the units
- Need quench heaters or CLIQ for all units
- Considering stability, to make this work reliably is going to be a serious challenge
- Final Conclusion
 - Only use E³SPreSSO if there is no alternatives
 - Hopefully quenches in HTS can be timely detected also for higher current densities
 - to be continued with Feather-M2.3-4

Feather-M2 Rendering

Thank You for your attention

17