25th International Conference on Magnet Technology in 2017 from August 27 to September 1 in Amsterdam, the Netherlands.

Quench protection of HTS coil composed of multiple Sub-pancake-coils by changing current distribution in sub-coils

R. Matsuo, A. Kojima, N. Matsuda, T. Takao, K. Nakamura O. Tsukamoto, Sophia University, Tokyo, Japan.

Sophia University 2017

Dept. of Electrical and Electronics Engineering

- Background
- Proposed quench protection
- Effectiveness of proposed method Case study
 - -Magnetic field and circuit simulation
 - -Hot-spot temperature analysis
- Concluding remarks

Background

HTS coils are key components of HTS applications. ⇒For these sustainable operation, Quench protection is important.

Damage to HTS coil

- → Over heating at hot-spot during quench protection
- → Easily damaged if quench protection system does not work properly

Ordinary quench protection method

Proposed method of quench protection

 B_r : the perpendicular magnetic field component to wide faces of the wires

 B_r in the top and bottom sub coils are larger than those of middle sub coils.

 I_c of the wires of Sub-coils 1 and 8 are lower than those of Sub-coils 2 - 7.

Quench starts most probably in Sub-coils 1 or 8 that has lower I_c

if the current of Sub-coils 1 and 8 is transferred to Sub-coils 2-7 when quench occurs in Sub-coil 1 or 8, the T_{HS} of Sub-coil 1 or 8 can be suppressed.

Proposed method of quench protection

Electric circuit and magnetic field analyses of proposed method- Case study

Magnetic field of model coil

Distribution of perpendicular magnetic field component to the wide face of the wire B_r

- Peak values of B_r in Sub-coils 1 and 8 are about 1.4 times higher than those of Sub-coils 2 and 7.
- I_c of Sub-coils 2 7 are higher than those of Sub-coils 1 and 8 by about 38 % at 40 K in the case of Bi / Ag sheathed tape wires (Based on Sumitomo's in-house data).

Current of model coil

 I_t decreases quickly and I_m increases temporarily and decreases. The hot spot is suppressed by fast decreasing current of quenching coil.

Voltage of model coil

During the quench protection sequence with the resistive-short V_0 does not exceed that in the case of ordinary quench protection \rightarrow the total voltage of the resistive short does not exceed that of ordinary method, even though coil currents of Sub-coils 1 and 8 change quickly

Magnetic field during quench protection sequence

 τ = 10 s and R_2 = 1.5 R_1

Dept. of Electrical and Electronics Engineering

Analytical model

Analytical model

$$I_{t}(t) = I_{sci}(x,t) + I_{Agi}(x,t)$$

$$V_{i}(x,t) = I_{Agi}(x,t)R_{Ag}(T_{i})$$

$$V_{i}(x,t) = V_{o} \left\{ \frac{I_{sci}(x,t)}{I_{C}(B_{i},T_{CB})} \right\}^{n(B_{i},T_{i})}$$

$$V$$

$$V$$

Current sharing model (n value model)

Coil is safe from damages caused by a quench when the quench detecting voltage is below the safe limit of quench detecting voltage V_{as}

Analytical results

Simulation results

The safe limit of quench detecting voltage V_{qs} is enlarged by using resistive-short method.

Concluding remarks

- •Resistive-short method is proposed to reduce hot spot temperature T_{HS} of coil composed of multiple coils.
- In resistive-short method, current in quenching sub coil is transferred to the other sub coil by shorting the other coil with a resistor.
- •The safe limit of detection voltage V_{qs} is increased in the case of resistive-short method comparing with the case of ordinary quench protection method.
- In the case of a short time decay constant τ, thermal run-away can be prevented.

Thank you for your attention

