UNIVERSITY OF TWENTE.

Coupling loss in prototype CFETR CS conductors with different cable patterns, measurement and modeling

Anvar. V.A^{1, 2}, T. Bagni¹, K.A. Yagotintsev¹, J. Qin³, Y. Wu³, A. Devred⁴, M.S.A. Hossain², C. Zhou¹, A. Nijhuis¹

¹ University of Twente, Faculty of Science & Technology, 7522 NB Enschede, The Netherlands ² University of Wollongong, Wollongong, Australia

³ Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China

⁴ ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex, France

25th International Conference on Magnet Technology

Outline

- Introduction
- Experiments
- JackPot Modeling
- Results
- Conclusion

Introduction

- CFETR stands for "China Fusion Engineering Test Reactor"
- CS Central solenoid
 - 6 Coils made of Nb₃Sn strands, 0.82 mm diam.
 - Design requirement CFETR CS model coil: 12 T peak field

	New ASIPP cable design - Triplet modification	New Twente Cable Design	ASIPP CSMC cable	
Sample state	Virgin (2) Press – Initial state (1)	Virgin	Virgin (2)	
Cable pattern	(2Sc + 1Cu) x 3 x 4 x 4 x 6			
Twist length (mm)	(40/10)x49x89x160x450	50x58x66x76x450	20x50x80x150x450	
Void fraction	32	28	33.4	
Outer diam. (mm)	32.6	31.6	32.6	

UNIVERSITY OF TWENTETE EMS

Introduction

Cable patterns

New triplet ASIPP cable design - triplet modification only in first stage by shorter twist pitch for copper strand

Regular ITER CS cable design for CICC cables with same twist pitch for all strands in same stage

Experiment - Ac loss Measurement

Sample preparation

Experiment – Resistance Measurement

0.0012

0.001

0.0008

S 0.0006

0.0004

0.0002

Sample Preparation – Inter-strand Resistance measurement

Sample

Cryostat

bath

Sample at 4.2 K

- 14 Nb₃Sn strands are selected at random from different petals
 - After heat treatment (brittle)
 - Four-point measurement using current of 20 – 30 A.

10

V I curve for Resistance Measurement

15

Current [A]

Voltage tap

30

Current lea

UNIVERSITY OF TWENTE

EMS

JackPot - ACDC CICC cable model

- Inter-strand contact resistance distribution from contact area
- Strand's mutual inductances
- Coupling with self & background field

E 8813

x [mm]

 Strand properties scaling law I_c(B,T,e) & n-value

Cable cross section from JackPot simulation

Results

AC loss - Experiment

R_c Results

Resistance measurement - Experiment

CSMC cable design

Inter-petal 1

Intra-petal

Intra-petal \rightarrow within a petal Inter-petal \rightarrow between petals

Intra-petal R_c expected range. Inter-petal R_c very low (unintended low petal wrap coverage, 40%) Large spread in Rc of direct neighboring petals due to direct interstrand contacts (locally no petal wrap coverage)

*R*_c distribution measured for New Triplet design somewhat unexpected, confirmation needed.

UNIVERSITY OF TWENTE.

EMS

Results JackPot

Coupling loss Experiment and Modelling

AC coupling loss calculated by JackPot based on realistic R_c distributions founded on large experimental data base.

- New Triplet Design Exp
- -New Triplet Design JP Sim
- Twente Cable Exp
- —Twente Cable JP Sim
- CSMC Cable Exp
- CSMC Cable JP Sim

Results JackPot

Interstrand Resistances: Experiment and Coupling loss Modelling

15

10 5

-5 -10

-15

*R*_c measurements - New Triplet design: data confirmation needed on values and distribution (petal wrap coverage petals 40 instead of 70%).

UNIVERSITY OF TWENTE

15 10 5 0 -5 -10 -15 0.05 0.1 0.15 0.2 0.25 0.3 0.35

z [m]

Results Comparison

	New triplet ASIPP Cable Design	Twente cable Design	CSMC ASIPP cable Design
Coupling loss time constant nr [ms]	3900	1110	770
Inter-strand Resistance $[n\Omega m]$	10	7	6
Inter-petal Resistance [n Ω m]	13 – 16	20 – 30	80 – 150
Petal wrap Coverage (%)	70 <mark>(40)</mark>	70 <mark>(40)</mark>	70
Void fraction (%)	32	28 <mark>(22)</mark>	33.4

Comparison of experiments - SULTAN and TWENTE

Good agreement Sultan - Twente

Time constant ($n\tau$) represents the coupling loss

CICC is multiple time constant system

For single $n\tau$ concept, as mostly used, determined $n\tau$ value depends strongly on considered frequency range

Approach used here: initial slope $Q_{cpl}(f)$ curve (higher $n\tau$).

Conclusion

- New triplet ASIPP design, but also Twente design shows higher coupling loss than CSMC layouts.
- Void fraction doesn't play much role in inter-strand resistances.
- Petal wrap coverage is one of the dominant factors determining intra-petal resistances, hence coupling loss
- No definitive conclusion about better geometry for CS cable at this stage. Multiple parameters varied unintended for different cable pattern variations; void fraction and petal wrap coverage.
- More work needed.

UNIVERSITY OF TWENTE.

Thank you!

Institute Of Plasma Physics Chinese Academy Of Sciences

