Pulsed field stability and AC loss of ITER NbTi PF joints by detailed quantitative modeling

Jianfeng Huang¹, Bagni Tommaso¹, Yury Ilyin² and Arend Nijhuis¹

[1. University of Twente  2. ITER Organization]

25th International Conference on Magnet Technology

Amsterdam, Netherlands, August 30, 2017
☑ Background

• PF joint
• model

☑ Performance analysis

• Electromagnetic force
• Cable-sole mask
• Contact resistivity

☑ Conclusion
ITER Poloidal Field (PF) coil joints

- ITER: Six PF coils drive and provide the stability of the plasma.
- Operate in pulsed mode with current up to 55 kA, and peak field up to 5 T.
- Double pancake module.
- 100 shaking hands lap-type joints – electrical / thermal connection.
Overview of JackPot AC/DC model – **Cable network**

**Jackpot AC/DC model – (University of Twente, Netherlands).**
Strand level cable model, accurately describes all strand trajectories in CICC.
- Contact resistance:
  - Inter-strand, inter-petal and strand to joint copper resistance
- Self and mutual inductance
- Coupling with background field

All the quantities are obtained from the geometry and the experiments thus there are no free parameters in the model.
Overview of JackPot AC/DC model – Joint network

Characters:
- A Partial Element Equivalent Circuit (PEEC) model is used to simulate the copper sole.
- Transfer from electromagnetic domain into the circuit domain, enable to combine the cable model in straightforward manner.
- Mutual inductance of copper: Multi-Level Fast Multi-pole Method (MLFMM).

a) Shape of the sole: remove PEEC boxes at the cable regions.

b) Determine the strands which contact the sole.

c) Coupling and strand-to-sole contact resistance.
PF joints simulations and measurements

• PF2, PF5, PF1&6 joints, different cable patterns and joint configurations.

• PF5, PF1 and PF6 joints were simulated and also measured in the SULTAN facility.

Cable pattern of ITER PF CICCs:

<table>
<thead>
<tr>
<th></th>
<th>PF 1,6</th>
<th>PF 5</th>
<th>PF 2,3,4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable pattern</td>
<td>3SC x 4 x 4 x 5 x 6</td>
<td>(3SC x 4 x 4 x 4 +C) x 6</td>
<td>(((2SC + 1Cu) x 3 +C1) x 5 +C2) x 6</td>
</tr>
</tbody>
</table>

UNIVERSITY OF TWENTE.
Background
- PF joint
- model

Performance analysis
- Electromagnetic force
- Cable-sole mask
- Contact resistivity

Conclusion
Non-linear V-I characteristic vs. electromagnetic force (1)

Observation:
- Sample PFJEU2 measurement: Non-linear DC Voltage-Current (V-I) characteristic.
- Design criterion 5 nΩ, vs. Measured variation of resistance: 3.5 nΩ !
- Probable reason: Disengagement cable-sole due to the electromagnetic force.

Method:
- Non-homogeneous contact resistance model.
- Changing the resistivity and contact area.
- High resistivity areas called “Patch”, $\text{Patch}_{\text{ratio}} = N/M$

Joint resistance dependence on transport current and magnetic field

Measurement

Simulation

Higher $\rho$

lower $\rho$

Index: N

Petal contact with the copper sole

Index: M

Intersection of the discretization
Non-linear V-I characteristic vs. electromagnetic force (2)

Results & Reasons:
- Enormous electromagnetic force $F = B \times I$.
  - Only 20% effective contact area in worst case!
- Absence of the solder layer (cable-to-sole).

Total: Joule heating loss + AC loss + Mechanical loss.

R vs Transport current:

R vs Magnetic field:
Current redistribution – Effect of Petal-Sole mask

- Petal double contact with the sole. Large induced low-resistance current loops. Mask: polymer (Kapton).

- Reduces large induced currents in strands from double contacted petal loops.

- However, currents in petals with mask is compelled to adjacent petals. → Increased current in other strands

Overall, effect of masks is marginal.
Power distribution – Effect of Petal-Sole mask

- Masks increase the joint power dissipation, correlates with mask area.
- Coupling loss redistribution between petals, increased power at interface of two petals with masks.
- Current non-uniformity caused by masks lead to severe power non-uniformity.

**Total power dissipation:**

**Maximum power distribution in petals:**

![Graphs showing power dissipation with and without mask](image)
AC losses – Effect of contact resistivity

- Contact resistivity → Current distribution → power dissipation.
- Three components: Cable, copper sole, cable-sole contacts.
- In general, increase of inter-strand resistivity and decrease of cable-to-sole resistivity helps to reduce coupling loss.
Results of PF joints – Comparisons between simulation (UT) and measurement (SULTAN)

- Five PF joint samples simulated using measured material properties i.e. copper RRR, and realistic inter-strand, -petal and strand to sole Rc (based on experiments).
- Good agreement between simulation and Sultan measurement.
- Quantitative adjustments possible by modeling: Joint resistance (DC) and AC loss.

UNIVERSITY OF TWENTE.
Background
- PF joint
- model

Performance analysis
- Electromagnetic force
- Cable-sole mask
- Contact resistivity

Conclusion
Conclusion

1. Five PF (PF5 &1,6) joint samples are simulated and compared with the test results in the SULTAN facility.

2. Non-linear V-I characteristic explained by effect of electromagnetic force.

3. Effect of cable-sole masks of reducing peak strand currents is marginal; but increases joint power dissipation.

4. Parametric model studies allow quantitative design optimization, by variation of copper-, contact resistivities and application of resistivity masks.
Thank you!