Design and Operation of the Pulsed Magnets at the Dresden High Magnetic Field Laboratory

Sergei Zherlitsyn

MT25, Amsterdam, 2017

SFB 1143

HZDR

HELMHOLTZ | ZENTRUM DRESDEN | ROSSENDORF

Outline

• Non-destructive Pulsed Magnets:

current status of the pulsed-magnet program at the HLD;
operational magnets, state of the art, recent improvements, and future developments;
scientific highlight

• Summary

10 pulsed-field cells, two capacitor banks

DRESDEN concept HIZDR Mitglied der Helmholtz-Gemeinschaft

The infrastructure

$E_{max} = 50 \text{ MJ}, U_{max} = 24 \text{ kV}, I_{max} = 375 \text{ kA}, P_{max} = 5 \text{ GW}$

Mitglied der Helmholtz-Gemeinschaft

Magnet design and in-house production

Mitglied der Helmholtz-Gemeinschaft Sergei Zherlitsyn | Hochfeld-Magnetlabor Dresden | http://www.hzdr.de/hld

DRESDEN

Pulsed-field magnets at the HLD

Total amount of pulses ~ 40 000 since 2007

Mitglied der Helmholtz-Gemeinschaf

Pulsed magnets at the HLD

- 8.6 MJ mono-coils with 24 mm bore,
 65 -70 T, rise time 33 ms, whole pulse duration ~ 150 ms;
 (4 magnets are in operation, 2 in production)
- 2) 1 MJ magnets with 20 or 24 mm bore,
 50 65 T, whole pulse duration ~ 25 ms (4 magnets are in operation, 1 in stock)^{50 cm}
- 3) 9.5 MJ dual-coil magnets with 12 and 16 mm bore for the fields 85 - 95 T (1 magnet is in operation, 1 in production) ^{cor}
- 4) 40 MJ mono-coil (long-pulse), 55 T, rise time ~ 230 ms (1 in stock)

Typical magnet-life time is a few thousand pulses

Challengies in magnet design

The most of the pulsed magnets are stress-limited : 4 GPa at 100 T

Magnet failure: shear stresses, reinforcement instability at the edges of the coil

Internal reinforcement system

A combination of S2 glass, stainless steel or MP35N foil (~0.1 mm thick) and Zylon fiber improve the reinforcement performance

Aim: Stress homogenization, additional safety

Solutions to improve the magnet performance:

- A new composition for the internal reinforcement:
 S2 glass stainless steel or MP35N foil (~0.1 mm thick) Zylon
- 2) No gap between the inner and outer coils (rigid structure, drawback: longer cooling)
- 3) The inner coil has only 4 layers (CuNb wire 6 x 4 mm²) (rigid structure, drawback: shorter pulse duration)
- 4) The inner coil is slightly shorter (21 cm) than the outer one (25 cm) (better stabilization of layer transitions)

Changes have been implemented in the magnet design

95 T and 85 T dual-coil

0.32 m

DRESDEN Concept HIZDR Mitglied der Helmholtz-Gemeinschaft

Available or feasible experimental techniques in 60-100 T

10 to 1000 ms is quasi-static; i.e., most of the experiments can be performed

- Magnetization, magnetic susceptibility, dHvA Effect;
- DC/AC Transport, ShdH, Hall effect;
- FIR spectroscopy
- ESR and NMR;
- Ultrasound;
- Magnetostriction;
- Magnetocaloric effect;
- X-rays (in future, European XFEL)

Supersolidity in frustrated magnet MnCr₂S₄

Ultrasound

Magnetization

The Mn–Cr exchange is compensated by *H*, and twoion magnetoelastic coupling is effectively zero

this field range (~ 40 T) may host complex spin structures or spin liquids

V. Tsurkan et al., Science Advances 3, e1601982 (2017)

H-T phase diagram and supersolidity

 spin-lattice coupling is important to stabilize the supersolid phase and robust magnetization plateau

EMFL

V. Tsurkan et al., Science Advances 3, e1601982 (2017)

Mitalied der Helmnonz-Gemeinsc

- To perform reliable user operation in 95 T/12 mm,
 85 T/16 mm, 70 T/24 mm magnets;
- To increase the peak field, reliability, and longevity of the pulsed magnets
- To provide 70 T user operation with rapid cooling magnets
- To address specific user demands related to pulsed magnets
- Increased winding capabilities: two winding machines, more magnets are produced now

Thank you for your attention !

Mitglied der Helmholtz-Gemeinschaft Sergei Zherlitsyn | Hochfeld-Magnetlabor Dresden | http://www.hzdr.de/hld