A REBCO PERSISTENT CURRENT SWITCH, IMMERSED IN SOLID NITROGEN, OPERATING AT TEMPERATURES NEAR 10 K

Philip C. Michael
Francis Bitter Magnet Laboratory
Plasma Science and Fusion Center
Massachusetts Institute of Technology, Cambridge, MA

25th International Conference on Magnet Technology Thu-Mo-Or29-01, 31 Aug. 2017

Representing

Jiho Lee, John Voccio (Wentworth Institute of Technology), Juan Bascunan, Seungyong Hahn (Seoul National University), and Yukikazu Iwasa

Outline

- Motivation
 - Typically two uses for persistent mode coils
 - Limited duration operation without power supply connection
 - High temporal stability for spectroscopy and imaging
- Target specifications
- PCS coil configuration
- Test arrangement
- Experimental results
- Summary

You may be asking ...

Who could possibly need a REBCO PCS operating in SN2 near 10 K?

The answer is not quite so far fetched as it seems!

Laboratory Magnetospheres

(1.2 MA-turn ⋅ 550 kJ ⋅ 565 kg)
Nb₃Sn ⋅ 3 Hours Float Time
Inductively charged, 30 ppm h⁻¹ decay

Ring Trap 1 (RT-1)

(0.25 MA-turn · 22 kJ · 112 kg) Bi-2223 · 6 Hours Float Time Charged using PCS, 0.1% h⁻¹ decay

From: D. Garnier, "The Laboratory Magnetosphere," presented at Bringing Space down to Earth, UCLA, 12 Apr. 2017

Principal motivation

- Technology development
 - -NMR above ~1 GHz requires HTS inner coils
 - -Temporal stability favors persistent mode operation
 - Our 1.3 GHz NMR emphasizes no-insulation REBCO double-pancakes
- Focused on switch technology
- Superconducting REBCO joints by others
 - Our recent work emphasized MgB₂ and Bi-2212 joints
 - Several 10⁻¹² ~ 10⁻¹³ Ohm joints reported recently
 - Very low resistance at lower fields and currents
 - Increasing to nOhm range with increasing field and current

Target specifications

- Heater power to open <1W near liquid helium temperature
 - To facilitate operation in recondensing helium bath
- Open-state resistance >1 mOhm near liquid helium temperature
 - ~4x characteristic resistance of NI coil in test setup
 - >2 mOhm resistance demonstrated with 0.25W heating power at 77 K

PCS coil configuration

- Assembled from NI REBCO DP remaining from Coil 2 of our H800 insert for 1.3G
 - 6 mm x 76 mm REBCO tape
 - 151 mm ID, 243 turn
 - 17.7 mH self-inductance
- Analytical model of heater presented at ASC in 2016
- 150 mm long close-out joint with ~6 nOhm resistance

Test apparatus

- Conduction-cooled with RDK-408 cryocooler
- Housed in straight bucket cryostat
- SN2 contained in 16 liter inner reservoir
 - For heat transfer and thermal stability
 - Cooling to 65 K by evacuation
 - Cooling to 10 K by cryocooler
- Binary current leads
 - Resistive stage cooled at 1st stage
 - Cooling partway along HTS leads via thermal links to 2nd stage
- Five strategically placed Cernox to monitor thermal performance

Charging behavior

- Upramp to 150 A with PCS closed shows no coil voltage
- Jump in voltage during PCS opening from small current mismatch
- Subsequent voltage shows 1st order NI coil behavior, with $\tau \sim 130$ s
- Hall probe also shows similar charging delay
- Field decay measured starting from return of PS to zero current

Switch performance

- Switch opening at ~0.75W heating power
- Steep temperature gradient strong thermal conductor along copper
- On-state resistance \sim 0.2 m Ω at this low heating power

P.C. Michael <michael@psfc.mit.edu> MT-25 Amsterdam Thu-Mo Or29-01

Persistent decay

- Field decay at 50A, 150A, 300A and 480A all show same trend
- Exponential fit shows 3.3x10⁶ s time constant, 0.1% h⁻¹ field decay rate
- L/R time constant matches 5.5 n Ω measured splice resistance

Need for PCS protection

- Hall signal lost during downramp from 630 A
- Premature quench of PCS conductor
- NI DP are largely self-protecting during quench
- Much smaller PCS conductor wasn't, and was significantly damaged
- Future use of parallel shunt resistor for PCS protection?

(See for example T. Tosaka, et al. IEEE Trans. Appl. Supercond., vol. 16, no. 2, pp. 910-913, Jun. 2006)

Summary

- Small NI-DP PCS coil, designed, built and tested at 10K in SN2
- Design objectives largely fulfilled
 - Heater power to open <1W
 - Quasi-persistent operation at up to 480 A with 0.1% h⁻¹ field decay rate
- Further development needed
 - Incorporation of protection resistor into coil circuit
 - Generation of larger open-state resistance without increasing heater power
 - Use of existing analytical models to guide future designs e.g. reduce copper?
- Pending applications for similar PCS heaters
 - LDX upgrade
 - Flux-pumped Z1/Z2 shim coils

Spare

Thermal performance

- Initial cooling by LN2 transfer
- Sub-cooling by evacuation
- Activation of cryocooler at ~65 K
- Base temperatures within a day
 - ~39K 1st stage, 41~42K leads
 - ~9K 2nd stage, 10K coil
- Rapid rise in lead and 1st stage temperatures above ~450A, the leads' "optimized" operating point
- 2nd stage and coil temperature constant to within 1K

