

Hub- and Site-cooling of MRI Magnets using Mobile Cryogenic System

S. K. Gandla and A. Mortensen

Talk Outline

- 1. Introduction to MRI cooldowns.
- 2. Site- and hub-cooling concepts.
- 3. MRI magnet pre-cooler for site- and hub-cooling.
- 4. Results from using the MRI magnet pre-cooler.

MRI helium consumption

- MRI amounts to ~ 20% of global helium consumption. Logistics and pre-cooling helium losses are a significant contribution to this consumption.
- 4K cold mass of a large bore superconducting MRI ~ few tons.
- Global sales of superconducting MRI magnets: few thousands/year.

Current Technology Cold-shipping MRI Magnets

- Existing cooling technologies for precooling MRI magnets at the factory
 - Liquid nitrogen.
 - Closed Loop Mechanical Cooler.
- MRI magnet is filled with liquid helium (4K) at factory. Boil-off loss reduced with helium recovery system.

Cold-shipping to Customer

• The liquid helium acts as a **cold storage buffer** to keep magnet cold until it arrives at customer.

Alternative logistics options for superconducting **MRI** magnets

Magnet cold-ship characteristics

- Magnet cryostat boils off helium during transit to customer site.
- Transit duration has to be kept to a minimum (sometimes airfreighted)

Warm-ship advantages

- Zero transit helium boil-off (site-cooling) or significantly reduced transit helium boil-off (hubcooling).
- No time constraint on the transit time.
- Increased flexibility in mode of transport.

Site-/Hub-cooling Concept

Closed loop helium gas circuit between MRI magnet helium vessel and a cryocooler used for MRI magnet pre-cooling

Cryocooler main requirements.

- → Duration of pre-cooling ~ 1 week, i.e., ~1 kW cooling power needed.
- → Operate with electrical power, water cooling, and helium process gas only.
- → Save liquid helium by pre-cooling magnet to < 30 K.

Realisation of Cryocooler

Cryocooler main components

Helium gas cooling

- 4 single stage coldheads (Sumitomo CH-110LT).
- Custom copper heat-exchangers.
- 4 helium compressors (Sumitomo F-70).

Forced helium gas flow

Cryogenic gas centrifugal fan.

Cleaning of helium circuit

Scroll pump.

Performance

Cooling capacity: 1.4 kW (@293 K)

(More information see: S. Gandla, R. Longsworth, 'Mobile Refrigeration System for Precool and Warmup of Superconducting Magnet', CEC/ICMC 2017)

Realisation of Cryocooler: Software Control

Software control main Features

- Automated protocols
- Manual controls for individual components of the cryocooler (touch screen)
- Remote monitoring of the cryocooler.
- Automatic pressure regulation

Screen shot of control screen

Manual controls for individual components of the cryocooler (touch screen)

Automated protocols for push-button control.

Site/Hub-cooling Steps: Evac + Charge

Site-cooling Steps: Pre-cooling

Site/hub-cooling steps: Magnet liquid helium fill

Test: Liquid helium cooling from ~20K to 4K

Test results

- Duration of initial fill: 15 minutes.
- Helium dewar loss: 17 kg (~ 140L).
- MRI Magnet mass gain: 13.5 kg (80% efficiency).
- Almost immediate liquid helium collection in MRI.

Site/hub-cooling steps: Magnet liquid helium fill

Overall helium fill efficiency

- No additional helium loss is incurred in cooling from 20K to 4K.
- 80 % liquid helium mass transfer efficiency (helium syphon efficiency).
- No liquid helium boil off after the helium fill as magnet thermal shield < 100K.

Hub-cooling in Brazil

- Magnets for the Brazilian market warm-ship by sea from Shenzen, China (Factory) to Joinville, Brazil (Hub) for local assembly.
- Magnets are pre-cooled and liquid helium filled at factory.

- Hub-cooling using a prototype cryocooler was introduced in 2015.
- Since 2015 majority of MRI magnets for Brazil market have been hub-cooled.
- Cryocooler saves > 1000 L liquid helium per MRI magnet compared to liquid nitrogen pre-cooling.

Demonstration of site-cooling.

Cryocooler connected to magnet on site.

- Remotely monitored process using internet connection.
- Magnet cooldown successful.

Custom-built Peli-case packaging protects cooler for multiple shipments and easy handling.

Summary and Acknowledgements

Summary

- Warm-shipping MRI magnets and utilising hubor site-cooling can reduce helium losses and shipping costs.
- A mobile, compact cryocooler for MRI magnets has been designed and tested.
- Hub-cooling in Brazil has been fully implemented.
- Site-cooling has been demonstrated.
- The cryocooler works for complete portfolio of Siemens MRI magnets.

Acknowledgements

Sumitomo Cryogenics of America

- N. L. Fasnacht Jr.
- B. Sloan
- R. Longsworth

Siemens Magnet Technology

- A. Johnstone
- D. Gubbins
- I. Wilkinson
- J. Lyness
- P. Walton