Nb₃Sn strand designs and heat treatments for high field magnet applications

Mike Field, Hanping Miao and Jeffrey Parrell – Bruker OST

Innovation with Integrity

- Nb₃Sn is flexible in the marketplace
 - Accelerators
 - Key needs high J_c & high RRR & low D_{eff}
 - High Field Solenoids
 - Key needs highest J_e
 - Undulators
 - Key needs low D_{eff} & high J_c
- Summary

Who is Bruker EST?

Innovation with Integrity

Nb₃Sn strand designs are flexible

Distributed Barrier: RRP[®] (B-OST) and PIT (B-EAS) – high Nb% and Sn% for highest J_c and J_e

Applications:

- High Field NMR
- Cyclotrons
- Accelerator grade high field magnets
- Hybrid magnet high field outserts
- Undulators

Single Barrier – Discrete filaments, lowest losses

Applications:

- ITER Coils
- low loss fast ramping magnets
- Cryogen free high field magnets

0.7 mm 108/127 stack RRP[®] ($D_s = 45 \mu m$)

• 700 km manufactured to date

0.85 mm 108/127 stack RRP[®] ($D_s = 55 \mu m$)

- 700 km manufactured to date
 - Heat treatment adjusted to improve performance margin

Future accelerators: room for RRP[®] gains **BRUKER**

Reasons to be optimistic about the tug of war between J_c , D_{eff} , RRR:

- J_c data points are close to FCC needs
 - New understanding of what happens during heat treatments; i.e. minimizing Nausite formation to maximize fine grained Nb₃Sn (C. Sanabria, FSU-ASC Wed-Mo-Pl6)

Future accelerators: room for RRP® gains BRUKER

- How do we get closer to $J_c(15 \text{ T}) = 2000 \text{ A/mm}^2$?
 - We need to understand and reduce variation
 - Renewed effort to modify strand for 16 T J_c (past emphasis on ~12 T and RRR)
 - now exploring changes to subelement to push up high field performance
 - Graded LAR
 - Quartenary doping with Ti and Ta
- Extrinsic influences on RRR –can we use these for good, to boost RRR?
 - Influence on the reaction environment on the conductivity of the copper jacket

Conductor for Solenoids

- Solenoids lab magnets, NMR, cyclotrons – RRP[®] & PIT
 - Reliable persistent joints (Nb barrier, not Ta)
 - Homogenous filaments, high N values
- RRP[®] Applications demand highest J_e, Cu:NC ~ 0.7
- PIT 114...288 elements
 - D_s ~ 40 to 65 μm
 - Cu:NC ~ 1.20-1.35
 - J_c (non-Cu) > 2500
 A/mm² @ 12 T, RRR > 100

Conductor for Undulators

 Undulators - difficult to obtain both high J_c and high RRR when subelement size small (e.g. 35 μm)

Key adjustments to 169 stack 0.6mm (D_s = 35 µm) RRP [®] conductor design	J _c (4.2 K, 12 T)	RRR
Nb:Sn 3.4:1, standard barrier, 210C/48hr + 400C/48hr + 650C/50hr HT	2699 A/mm ²	11
Nb:Sn 3.6:1, 30% thicker barrier, 210C/48hr + 400C/48hr + 665C/100hr HT	1932 A/mm ²	124

Conductor for Undulators

- Sanabria (FSU) developed a heat treatment approach to reduce Nausite layer allows for more useful currents at the small $\rm D_{eff}$

Nb₃Sn at elevated temperatures

T_c of ~18K coupled with high J_c means there is useful currents at elevated temperatures (cryogen free environments)

- Spreadsheet @ <u>http://researchmeasurements.schralpit.com/ese-scaling-spreadsheet/</u>
- Ekin et al., "Extrapolative Scaling Expression: A Fitting Equation for Extrapolating Full Ic(B,T,ε) Data Matrixes From Limited Data" IEEE Transactions on Applied Superconductivity, VOL. 27, NO. 4, June 2017

Summary

- Nb₃Sn RRP[®], PIT, and single barrier conductors can be engineered to meet a wide range of performance needs
 - Accelerators : we are manufacturing large volumes, tweaked heat treatment to maximize performance margin
 - High Field Solenoids: both RRP[®] and PIT are suitable for high field persistent applications
 - Undulators: new improvements to heat treaments enable higher currents with good RRR at the D_{eff} needed
 - Cryogen free and elevated temperature applications are possible with Nb₃Sn