

1

Recent Progress of Application-Oriented DI-BSCCO Wires

Takayoshi Nakashima

S. Kobayashi, G. Osabe, K. Yamazaki, M. Kikuchi, S.Yamade, S. Takeda, T. Okada and T. Kato

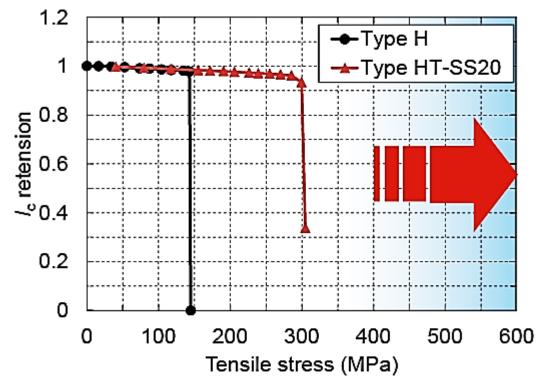
Sumitomo Electric Industries, Japan

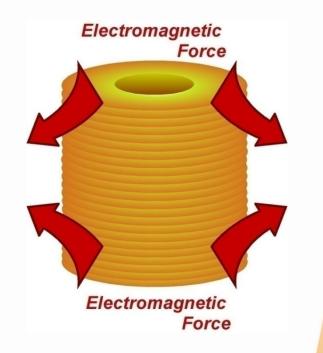
Research Partners

K. Osamura (*Research Institute for Applied Science*)K. Kasaba (*Toyama University*)H. Kitaguchi (*National Institute for Materials Science*)

Outline

- **1. Concepts of reinforced DI-BSCCO**
 - Lamination with pre-tension technique and tough Ni-alloy tapes
- 2. Updated status of "Type HT-NX"
 - ✓ *I_c* performance and mechanical strength
- 3. R&D activities

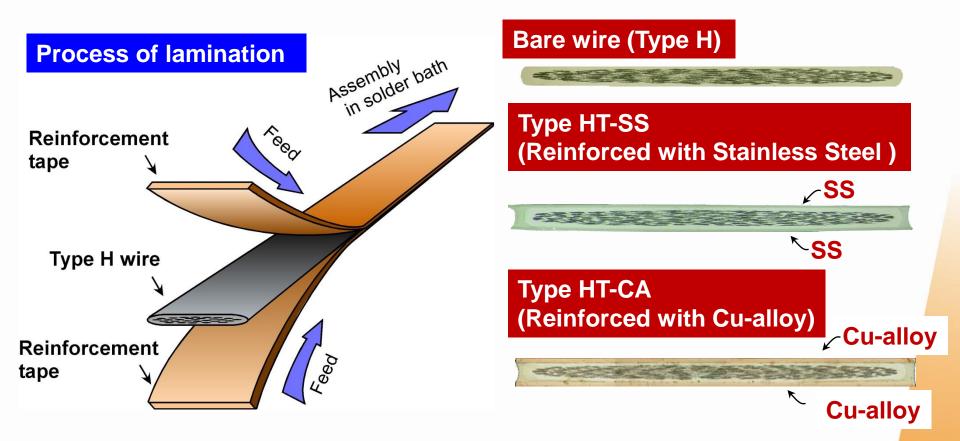

Improvement of splice structure with Type HT-NX



Introduction

Development of high strength Bi-2223 wire (Type HT-NX)

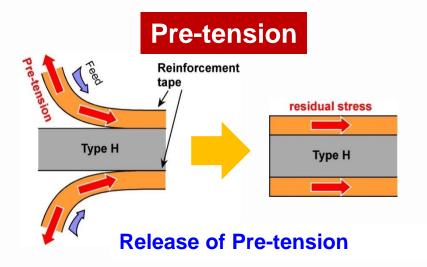
Bi-2223 (DI-BSCCO) were not widely used in the field of high magnetic field (>20 T) coil market because its strength was too low for the hoop stress.


11-85

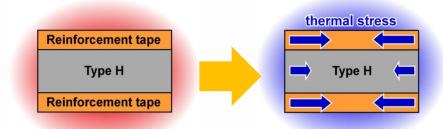
We needed to develop a new Type HT that can be tolerant with pretty high tensile stress (>400 MPa) generated in a high field magnet.

Tensile stress properties of standard Type H and Type HT-SS at 77 K.

Type HT (mechanically-reinforced Type H)



Type HT (Type H with Toughness) is laminated with reinforcement tapes. They are firmly bonded with Type H, and de-lamination never occurs, as long as the wire temperature is kept below 200 degree C.


Development of 3-ply technique

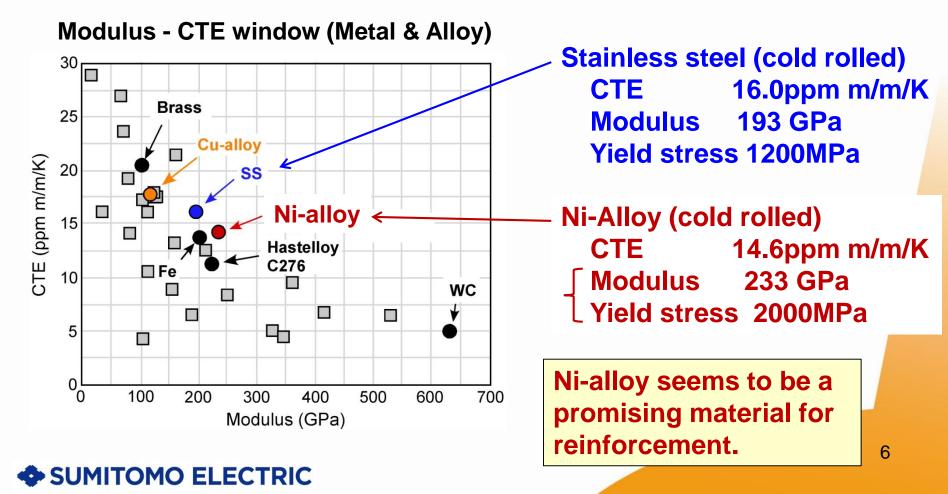
Pre-tension and thermal mismatch

can give residual compressive strain to a bare tape.

Thermal mismatch

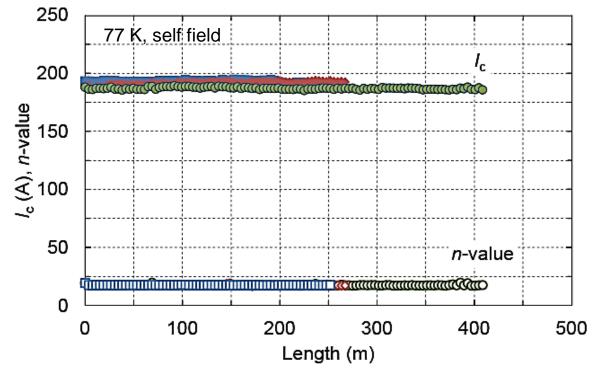
Cooling down

Higher compressive strain is applied to Type H due to relaxation to equilibrium in Type HT after removing higher pre-tension. Higher compressive strain is applied to Type H due to higher thermal mismatch between the reinforcement tapes and Type H.



Introduction

Effort for developing better metallic material

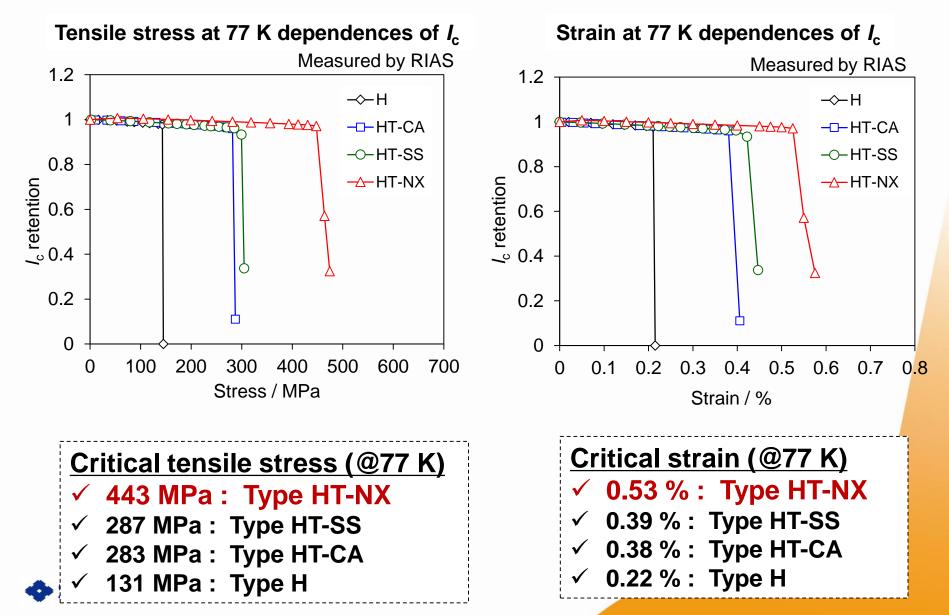

Higher pre-tension (≥ 80 N) will be available for reinforcements with

- high CTE (Coefficient of Thermal Expansion)
- high toughness (high Modulus & Yield stress).

Productivity and Shipment

 $I_{\rm c}$ and *n*-value distribution of typical Type HT-NX wires in several hundreds meters long

 I_c and *n*-value are very uniform in hundreds meters long wire.

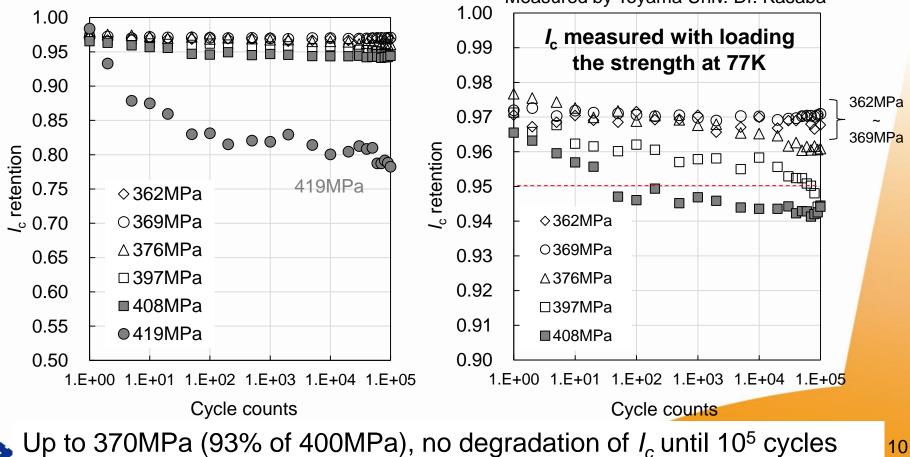

*For shipment

Sumitomo ships Type HT-NX with unit length 200 m surely. In near future, unit length more than 500 m will be produced.

Strength results of Type HT-NX at R.T.

Double bending diameter at R.T. Tension at R.T. dependences of I_c dependences of I_c 1.2 1.2 1 1 0.8 0.8 /c retention 7.0 % $I_{\rm c}$ retention 0.6 -D-Type H -->→-H 0.4 - Type-HT-CA -O-HT-CA → Type-HT-SS 0.2 -D-HT-SS 0.2 0 0 20 40 60 80 100 0 100 200 300 400 0 500 Tension / N Double Bending Diameter / mm Critical tension (@R.T.) Critical DB diameter (@R.T.) ✓ 449 N : Type HT-NX 35 mm : Type HT-NX ✓ 344 N : Type HT-CA 60 mm : Type HT-CA ✓ 277 N : Type HT-SS 45 mm : Type HT-SS 114 N : Type H 80 mm : Type H

Strength results of Type HT-NX at 77 K


Collaborative study: Toyama Univ. Dr. K. Kasaba

Fatigue test of Type HT-NX at 77K

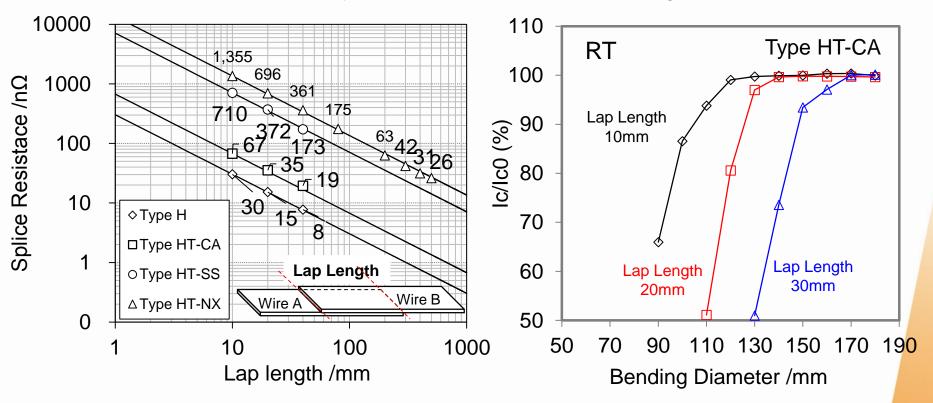
✓ Test condition

Wire: HT-NX (0.03mm^t, Mass-produced product) Temperature: 77K Tensile loading: 362 MPa~419MPa (Spec. 400MPa@77K) Number of Cycles: up to 100,000 cycles Measured by Toyama Univ. Dr. Kasaba

Specifications of DI-BSCCO

	Туре Н	Type HT-SS	Type HT-CA	Type HT-NX	
Average Width	4.3+/-0.2mm	4.5+/-0.1mm	4.5+/-0.1mm	4.5+/-0.2mm	
Average Thickness	0.23+/-0.01mm	0.29+/-0.02mm	0.34+/-0.02mm	0.31+/-0.03mm	
Reinforcement tape	_	Stainless steel (0.02mm ^t)	Copper alloy (0.05mm ^t)	Nickel alloy (0.03mm ^t)	
<i>I</i> _c (77K, Self Field)	170A, 180A, 190A, 200A				
Critical Wire Tension * (RT)	80N **	230N **	280N **	410N **	
Critical Tensile Strength * (77K)	130 MPa **	270 MPa **	250 MPa **	400 MPa **	
Critical Tensile Strain * (77K)	0.2% **	0.4% **	0.3% **	0.5% **	
Critical Double Bending Diameter * (RT)	80mm **	60mm **	60mm **	40mm **	

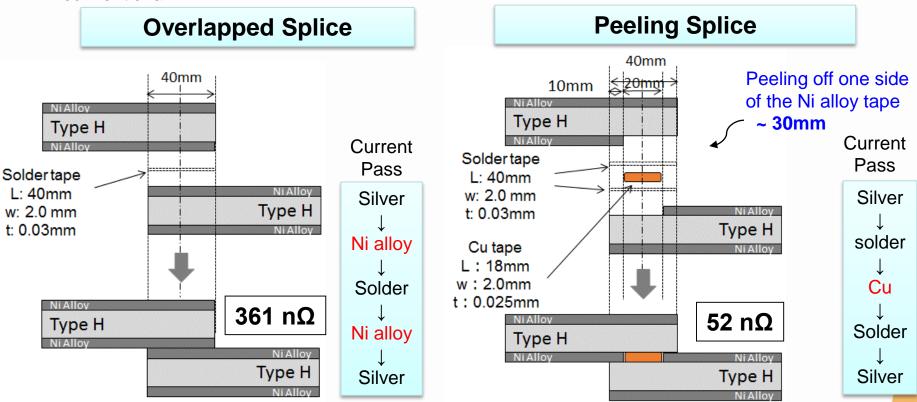
* 95% lc retention, * * Typical value


- ✓ Type HT-NX has released since April, 2015
- ✓ The tensile strength of Type HT-NX is 1.5 times higher than those of Type HT-SS and Type HT-CA
- ✓ ave. 300m Type HT-NX is available unit length for shipment now

12/25

Splice Resistance of Type HT-NX

Splice resistance is inversely proportional to the lap length of the spliced wire


- ✓ Splice resistance of the Type HT-NX wire is higher than any other Type HT series because the resistivity of the Ni alloy reinforcement material is high.
- ✓ Longer lap length reduced the splice resistance but bending property become worse.

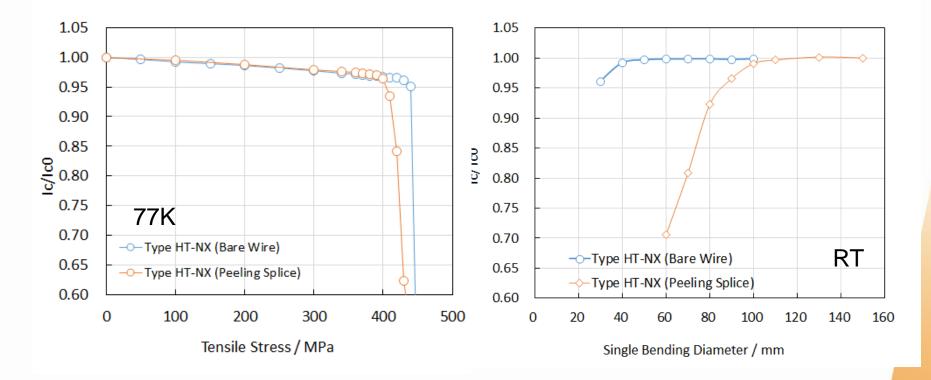
★ <u>Reducing the splice resistance</u> without the deterioration of mechanical properties of the spliced wire is important.

Splice Structure for Type HT-NX

01-85

conventional

Longitudinal cross-section images of a over-lapping splice structure


★ Splice resistance of the overlapped splice wire is $361n\Omega$. Splice resistance of new spliced Type HT-NX (with Cu tape) was $52n\Omega$ at 77K.

⇒ Splice resistance reduced 86% to compare with conventional Spliced Type HT-NX

Experimental Results

Strength of the peeling splice Type HT-NX

Critical tensile stress of the Type HT-NX wire itself was **440MPa** at 77K. Critical tensile stress of peeling splice wire was **405MPa**.That is 92% of the original wire. Critical single bending diameter of peeling splice was **85mm**.

New structure has shown remarkably lower resistance without deteriorating the mechanical properties.

Summary New release						
	Туре Н	Type HT-SS	Type HT-CA	Type HT-NX		
Average Width	4.3+/-0.2mm	4.5+/-0.1mm	4.5+/-0.1mm	4.5+/-0.2mm		
Average Thickness	0.23+/-0.01mm	0.29+/-0.02mm	0.34+/-0.02mm	0.31+/-0.03mm		
Reinforcement tape	_	Stainless steel (0.02mm ^t)	Copper alloy (0.05mm ^t)	Nickel alloy (0.03mm ^t)		
Ic (77K, Self Field)	170A, 180A, 190A, 200A					
Critical Wire Tension * (RT)	80N **	230N **	280N **	410N **		
Critical Tensile Stress * (77K)	130 MPa **	270 MPa **	250 MPa **	400 MPa **		
Critical Tensile Strain * (77K)	0.2% **	0.4% **	0.3% **	0.5% **		
Critical Double Bending Diameter * (RT)	80mm **	60mm **	60mm **	40mm **		

* 95% Ic retention, * * Typical value

- ✓ Type HT-NX was launched in April, 2015.
- ✓ Unit length of Type HT-NX: max. 200m (present)

max. >500m (in near future)

 Splice with low resistance (52 nΩ) and high strength (critical tesile stress 405 MPa, critical bending diameter 85 mm) has been developed for Type HT-NX.

Thank you for your attention.

