Thu-Mo-Or32-01

Measurement of persistent current Gd123 coil for superconducting joint fabricated by CJMB method

Xinzhe Jin^{1,2}, Yoshinori Yanagisawa², Hideaki Maeda²

¹Muroran Institute of Technology; ²RIKEN

1. Introduction

Recently, we suggested a new bridge-type joint between two REBCO coated conductors using YBCO bulk by heat treatment with crystal growth at boundary of wire-bulk. We call this method as crystalline joint by melted bulk (**CJMB**).

A <u>model experiment [1]</u> for the joint boundary between the coated conductor and the YBCO bulk (wire-bulk) has been carried out as first step, and it is obtained that the interface has a critical current of <u>10 A</u> with a high tensile strength above 100 MPa, indicating the feasibility of the practical superconducting joint.
[1] Xinzhe Jin *et al* 2015 *Supercond. Sci. Technol.* **28** 075010

In this study:

We investigated to develop superconducting joint between GdBCO coated conductors using YbBCO bulk intermedium (wire-bulk-wire) during a short preparation time below one day.

2. Wire and bulk

Gd123 coated conductor manufactured by Sumitomo Electric Industries, Ltd

YbBCO bulk

A 3 mm thick piece of Yb123 polycrystalline bulk was prepared by a conventional sintering method using raw materials of Yb₂O₃, BaCO₃, and CuO powders, with two 10 h periods of heating at 890 °C. And then, the YbBCO bulk was ground to a thickness of 0.05~0.1 mm to obtain a Yb123 lamina.

3. Joint method using a YbBCO bulk

Characteristics

- ♦ Highest temperature **930 °C for 1min** in 50% of oxygen atmosphere (Without melting of GdBCO layer in the conductors)
- Oxygen aneeling at 450 °C for 20 h 100% of oxygen atmosphere

Infrared heater

wire

Joint image at cross-section of wire

3. Measurement and result of joint sample

Prepared joint sample

Superconducting joint by CJMB

Immediately after joining Critical current $I_{c1} = 7 \text{ A} (n = 15)$

After 1 month in air $I_{c2} = 6.5 \text{ A } (93\% \text{ of } I_{c1})$ High temporal stability in air

4. Persistent current test in coil sample

Specification of Coil

Wire type	Gd123 coated conductor		
Critical current of wire at 77 K (A)	220		
Length of the wire (m)	7		
Winding structure	Double pancake		
Inner diameter of coil (mm)	30		
Method to isolate	Kapton tape		

Measurement method of persistent current without additional persistent current switch (PCS) part

Step1: I_c measurement for joint part in coil sample at temperature 77 K

Step 2: Current supply to the coil without currentcarrying to the joint part as PCS function

Step 3: Persistent current measurement after total coil is put into liquid nitrogen

The joint part can be used as a PCS function.

Magnetic field measurement at the coil center

5. Development of joint to increase the $I_{\rm c}$

Multiple intermedia

No.	Bulk number	Length (mm)	Thickness (mm)	Area (mm²)	<i>l</i> c (A)
#1	1	12	0.05	36	6.5
#2	1	3	0.05	9	6.9
#3	1	1	0.05	3	1.0
#4	1	3	1	9	0.5
#5	1	3	0.02	9	6.0
#6	2	3	0.05	18	12.7
#7	3	3	0.05	18	21.2

6. Results and next plan

Results:

- ◆ A superconducting joint between Gd123 wires was successfully developed with critical current about 21 A at 77 K.
- ◆ A high temporal stability of the critical current in air was measured for the joint sample fabricated by CJMB method.
- Persistent current coil of the Gd123 coated conductor has a low resistance below 1 pΩ (10⁻¹² Ω), that is applicable in NMR magnet.

Next plans:

- R&D for 50 A of critical current at 77K
- Observation of boundary using SEM

Investigate of crystal growth of YbBCO

A <u>low growth speed</u>: ~ 150 μ m width for 2 days In joint: crystal growth below 1 μ m at boundary

Poly crystal in bulk center
Crystal growth at boundary

Gd123 layer of the coated conductor