Multiphysics FEA Led Design of Bi-2212 Round Wire Prototype Coils

Ernesto S. Bosque

31 August 2017 MT25: Amsterdam

U.P. Trociewitz, Y.Kim, D.K. Hilton, C.L. English, D.S. Davis, G. Miller, D. Larbalestier

MT25

25th International Conference on Magnet Technology

Overview

• Bi-2212 RW: Performance limits

- Multiphysics FEA
 - Introduction to the modeling effort
 - Principal assumptions and definitions
 - Analysis led design of prototype coils
- The Prototype Coil Program
 - Approaching operational limits
 - Experimental validation of the modeling
- Summary

Bi-2212 RW: A brief word on the wires

 Advancing wire and OP-HT processing Macroscopically isotropic, twisted round wire: Minimal field drift; appropriate for NMR Magnetization even smaller than LTS J.Jiang, et al. D.Larbalestier et al., Nature Materials 2014 P.Chen D.Davis, et al.

Bi-2212 RW: Performance limits

R.Bjoerstad et al., CERN EuCARD-2 2015

- $I_c(B)$ field dependence
- $I_c(\varepsilon)$ strain along wire axis
 - MTS stress-strain data taken from single wires
 - Coil analogy ≈ azimuthal (hoop) strains in coils

Multiphysics FEA: Addressing primary concerns

Models studied on a wire-by-wire level

- 4.2 K thermal strain
- Computation of magnetic fields
 - (J B R) Lorentz Forces \rightarrow coil source stresses

Above: Field generated by running 100 A/mm² in a single loop (1 mm dia wire; 10 mm dia loop) placed within a 10 T background field (range 9.97 [blue] to 10.05 [red] T).

Multiphysics FEA: Addressing primary concerns

Models studied on a wire-by-wire level

- 4.2 K thermal strain
- Computation of magnetic fields
 - $(J \cdot B \cdot R)$ Lorentz Forces \rightarrow coil source stresses
- Coupling the $J \cdot B \cdot R$ to structural mechanics
 - These coils epoxy impregnated; so stresses are redistributed across all materials within the coil pack
 - Allows for reinforcement on coil level
 - Each material defined with its own material properties

Multiphysics FEA: Addressing primary concerns

Models studied on a wire-by-wire level

- 4.2 K thermal strain
- Computation of magnetic fields
 - $(J \cdot B \cdot R)$ Lorentz Forces \rightarrow coil source stresses
- Coupling the $J \cdot B \cdot R$ to structural mechanics
 - These coils epoxy impregnated; so stresses are redistributed across all materials within the coil pack
 - Allows for reinforcement on coil level
 - Each material defined with its own material properties
 - Conductor elasticity modulus based on non-linear stress-strain data from short samples
 - Fully coupled model accounts for movement of each conductor
- Parametric sweeps
 - Input current and LTS Outsert fields are real 'knobs'
 - Strain-based performance envelopes

Multiphysics FEA: Analysis led design of prototype coils

- Performance requirements for High Field Demonstration Magnet
 - IMPDAHMA Outsert: geometry and field
 - Demonstration design

 Thermal contractions $-T_{op} = 4.2 \text{ K}$ Generated loads $-\text{targeting} \sim 1 \text{ GHz } (23.5 \text{ T})$ Homogeneity $-\text{targeting} \sim 1 \text{ ppm}$
- Prototype design constraints
 - Geometry and background fields of the available LTS test beds
 - Working hot zone of the furnace (OPHT facility)
 inner diameter of 130 mm; 450 mm height
- Desire to drive Bi-2212 RW technology
 Test plans to reach ultimate conductor limits

The Prototype Coil Program

Motivation for each prototype:

- First set of prototypes were scaled versions of a larger (high field NMR) demonstration coil (18 layers, ~10 turns)
 - intended to test manufacturing
 - designed for a now decommissioned 17 T testbed
- Second set of prototypes were designed to approach the strain limits of a coil wound with Bi-2212 RW conductor (4 layers, 10 turns) (limited to the available 8 T background)
 - validating the FEA modeling efforts; qualification & quantification
 - examining reinforcement techniques
- Now using either prototype to target specific hurdles as we further develop Bi-2212 RW for high field NMR applications

Prototype Coils: Experimental validation of modeling

Second set of prototypes predictions

- First coil (not reinforced) was predicted to reach 0.6% azimuthal strain near ~280 A (231 A/mm²) within an ~8 T background
- Second coil built with full reinforcement
- Third coil includes moderate reinforcement to reach 0.6% near ~350 A (489 A/mm²)

The third prototype was constructed with 1.0 mm wire; first and second had 1.3 mm wire. Roughly, B and R were held constant while increasing J_e . The added strain was thus managed with the inclusion of moderate reinforcement.

Prototype Coils: Experimental validation of modeling

Second set of prototypes predictions

- First coil (not reinforced) was predicted to reach 0.6% azimuthal strain near ~280 A (231 A/mm²) within an ~8 T background
- Second coil built with full reinforcement
- Third coil includes moderate reinforcement to reach 0.6% near ~350 A (489 A/mm²)

The third prototype was constructed with 1.0 mm wire; first and second had 1.3 mm wire. Roughly, B and R were held constant while increasing J_e . The added strain was thus managed with the inclusion of moderate reinforcement.

A Bi-2212 Insert for High Field NMR

Next up: the NMR demonstration coil

Coil parametersWire diameter: 1.0 mm wire

 I_{op} : 310 A

<u>ID</u>: 44.45 mm

Background: 16 T (Adding: 5.3 T)

- Computation
 16.7 million degrees of freedom (10 hrs to mesh)
 45 minutes to compute (89 GB ram)
- So what?Confidence from the prototypes predicts:

21.3 T [909 MHz] is achieved at 0.4% azimuthal strain; 23.5 T [1+ GHz] is plausible even with this demo coil - 2212 macroscopically isotropic and should prove to have better field temporal stability

E.S. Bosque – MT25: Amsterdam

Thu-Mo-Or33 – 31 August 2017

Summary

PMM170123-4

FEA tools have been developed to confidently build Bi-2212 coils that approach the conductor operating limits

- This conductor was once I_c limited
- Now it is strain limited
- Newest short sample shows at least $50\% J_c$ improvement over wires used in these prototype coils
- Coil reinforcement allows for more use of this higher $I_c(B)$ limit, and otherwise provides tolerance to approaching $\epsilon_{critical} = 0.6\%$
- Bi-2212 coil reinforcement is developing well, and Bi-2212 technology is ever advancing

Acknowledgements

This work is supported by the National Science Foundation under DMR-1157490, the State of Florida, and a grant from the National Institute of Health under 1 R21 GM111302-01.