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Abstract - Proton therapy for the treatment of cancers adopts a rotating system called gantry to irradiate the tumor from any direction. The gantry system consists of different beamline magnets that bend the proton beam towards the patient. The use of superconducting
magnets allows reducing the weight of the last bending section. During the gantry operation, the magnetic field of the last bending section is varied 1n time to tune the proton penetration depth. This change determines electrodynamic transients in the superconducting
strands and cables that generate losses. This work describes the application of the THELMA code to compute the hysteresis and coupling losses 1n an innovative magnet system designed by PSI for future superconducting gantries.

Gantry magnet system configuration and working scenario Loss computation methodologies
® The combined function magnet system configuration ® The reference working scenario of the Hysteresis losses Coupling losses
includes 8 main coils and two end quadrupoles [1]: gantry magnet system 1s characterized The computation of the hysteresis losses starts from the Coupling losses are computed by means of the THELMA code [2], which calculates the
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® A collaboration between PSI and the University of Bologna was established to study power losses in Nb,Sn Rutherford cables for future gantry magnet systems
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® The computed losses were implemented in an adiabatic thermal model: the available temperature margin guarantees a safe magnet design



