

Measurements on critical current and bending strain tolerance for ex-situ MgB₂ wires and tapes under high field up to 8T

Julien Avronsart^{*}, Christophe Berriaud^{*}, Xavier Chaud[†], Clément Hilaire^{*}, Mario Kazazi^{*}, Davide Nardelli[‡], Matteo Tropeano[‡] *IRFU, CEA, Université Paris-Saclay F-91191 Gif-sur-Yvette, FR. [†]Université Grenoble Alpes, CNRS, LNCMI F-38042 Grenoble, FR. [‡]Columbus Superconductors I-16133 Genoa, IT ID: MT25-Wed-Af-Po3.09-07 [137]

Presentation

- ✓ MgB₂ is a simple and light binary compound with easily available material
- ✓ MgB₂ can be processed into bulks, wires, tapes and thin films of long lengths by different methods (PIT, IMD...)
- ✗ MgB₂ wires critical current low under high magnetic field and very sensible to tensile stress
 - \blacktriangleright Find the MgB₂ irreversible strain (ε_{irr})
 - ► Study the effect of mechanical stresses (bending) on the critical current
 - ► Measure the Jc and Je of new pre-industrialized wires from Columbus SpA

Wire characteristics

Four types of Columbus SpA pre-industrialized Monel clad, carbon-doped *ex situ* Powder in Tube (PIT) processed wires and tapes

	А	В	С	D
Shape	Tape	Tape	Wire	Tape
Wire cross-section [mm ²]	2×1	3×0.5	1.81	2×1
Filling-factor [%]	34	18	28	
Number of filaments	19	19	6 + 1 Cu central	
Sheath (matrix)	Ni	Fe	Ni	Ni

- Designed for the winding of medium/high field MRI magnets
- Fe-sheathed tape could also be used in the switch device for persistent mode MRI

Experiment settings

Test facility

Tested at LNCMI Grenoble at field ranging from 3 to 8 T

Experiment settings

- ✤ Ic measured by the four-probe method with the $0.1 \,\mu V/cm$ criterion
- One sample powered and measured each test in the center field (adjustable height)

Results of critical currents vs bending strain

Critical current density and engineering current density measurements

- dation
- at 5.5 T

 - ► Effect on the Jc ?

Magnetic field B [T]

- ★ The normalized critical current $(Ic_n = Ic/Ic_0)$ vs ε_b was plotted
- Same Ic degradation for sample A, C and D at $\varepsilon_b = 0.45 \%$
- 0.3%)
- process (cold-work)
- \checkmark Grain connectivity due to \checkmark MgB₂ density
- \blacktriangleright Mechanical properties \rightarrow \checkmark Cracks in SC MgB₂ phase

Sample B exhibits the highest $Jc \rightarrow 922 \text{ A} \text{ mm}^{-2}$ at 5 T ✓ Fe sheath higher hardness compared to Ni sheath \rightarrow better compaction of the grains in the MgB₂ matrix \rightarrow *r*connectivity *r*Jc

X Higher dependence to magnetic field $? \rightarrow Fe + B$ chemical reaction \rightarrow FeB₂ pollution

 \times Ni sheath limits the compaction of the SC MgB₂ phase during the cold-work of the wires/tapes

✓ The process seems mastered as new types of preindustrialized wires are produced with no severe Ic degra-

The engineering current density follows the order of the wire filling factors. Sample A (FF = 34 %) $\rightarrow 180 \text{ A mm}^{-2}$

→ Increase the Sample B (with Fe) filling factor ?

X Low number of points for each wire (example for sample A on the left) \blacktriangleright As ε_{irr} is not magnetic field dependent \rightarrow for each wire, normalized current Ic_n vs strain at averaged field were plotted on the same graph (right)

No degradation for Fe sheathed sample (usually degradation is expected around

✓ Fe sheath allows more strain hardening than Ni sheath during the manufacturing