Upper critical and irreversibility magnetic fields and transport properties of bulk K-, Ni-, and Co-doped BaFe$_2$As$_2$ pnictides for different granularities and their prospects in magnet design #230

Martin Nikolo1, Jeremy Weiss2, John Singleton3, Jianyi Jiang2, and Eric Hellstrom2

1Department of Physics, Saint Louis University, St. Louis, MO 63103, USA.
2Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
3National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.

Pulsed magnetic fields of up to 65 T were applied via radio frequency proximity detector oscillator (PDO) induction method: Place a superconducting sample in a small coil which is the inductive element of a resonant tank circuit. The exclusion of flux from the sample and the coil decreases the inductance of the circuit and the resonant frequency increases.

• The Fe-based superconductor, (Ba$_{0.6}$K$_{0.4}$)Fe$_2$As$_2$, can generate tesla-scale fields with a polycrystalline bulk form. Because its T_c is the same as MgB$_2$ and because its H_{c2} is higher (>70 T versus <30 T), it shows more promise than REBCO or MgB$_2$ materials.

• K-doped Ba$_{122}$ materials are suitable for making larger bulk magnets that can be magnetized to trap strong magnetic fields higher than 10 T.1

• Bulk Ba$_{122}$ magnets can be fabricated by a scalable, versatile, and low-cost technique using ball milling, CIPping, and HIPping, common industrial ceramic processing techniques.1 Their fracture toughness exceeds HIPped MgB$_2$, bulk YBCO, and is about equal to polycrystalline Al$_2$O$_3$.1

For (Ba$_{0.6}$K$_{0.4}$)Fe$_2$As$_2$ the global critical current density obtained from magnetization measurements is inversely proportional to grain radius reaching over 100 kAcm2 at 5 K and 0 T.

Comparison with other superconductors2

Ni-doped samples with larger average grain size perform better.

Optimal grain size-large varies with stoichiometry and processing method.

Conclusion

Measurement

Results

• Ni-doped samples with larger average grain size perform better

Optimal grain size-large varies with stoichiometry and processing method
