

25th International Conference on Magnet Technology

RAI - Amsterdam August 27 - September 1, 2017

Detailed magnetic and mechanical design of the nested orbit correctors for HL-LHC

HL-LHC PROJEC

Jesús Ángel García-Matos, Pablo Abramian, Jesús Calero, Pablo Gómez, Jose Luis Gutierrez, Luis García-Tabarés, Daniel López, Javier Munilla, and **Fernando Toral** (CIEMAT).

Nicolas Bourcey, Paolo Fessia, Susana Izquierdo Bermudez, Juan Carlos Pérez, and Ezio Todesco (CERN).

28th August 2017

CONTEND DE ENANA DE ENANA CONTEND DE ENANA CONTENTIONAL INDUSTRIA

MT25-Mon-Mo-Or1-04

Outline

- Final magnetic design.
- Measurement of cable Young modulus.
- Final mechanical design.
- Short mechanical model.
- Conclusions.

Magnet and cable specifications

MCBXFB Tech	Vertical	Combined		
Magnet configuration	Combined dipole (Operation in X-Y square)	dipole field	dipole field (Variable	
Integrated field	2.5 Tm		orientation)	
Minimum free aperture	150 mm	(2.1 1)		
Nominal current < 2500 A				
Radiation resistance	40 MGy	k '	Horizontal	
Physical length	< 1.505 m		dipolo field	
Working temperature	Working temperature 1.9 K			
Iron geometry MQXF iron holes			(2.1 I)	
Field quality < 10 units (1E-4)				
Fringe field < 40 mT (Out of the Cryostat)		~	-Tatal	

Cable Parameters

No. of strands	18
Strand diameter	0.48 mm
Cable thickness	0.845 mn
Cable width	4.37 mm
Key-stone angle	0.67°
Cu:Sc	1.75

Detailed magnetic design: Final iron geometry

HILUMI

Detailed magnetic design: Torque and peak field at coil ends

- Field is not aligned with coil poles at nominal current (45° orientation)
- Peak field is always at the straight section.

- Coil ends should be shortened to improve the torque clamping.
- Look out endspacers not to be too slender.

Detailed magnetic design: Computation strategy and field quality

MT25 – Fernando Toral – 28th August 2017

Outline

• Final magnetic design.

- Measurement of cable Young modulus.
- Final mechanical design.
- Short mechanical model.
- Conclusions.

Measurement of cable Young modulus

-15

-20

-25

-30

Custom tooling was used to obtain the Young modulus of ten-cable stack impregnated samples. First results showed half the expected rigidity.

Mechanical design update (I)

- The new cable rigidity (20 GPa) has been included in the mechanical model.
- An additional 0.1 mm of interference is necessary to achieve the same coil pre-compression than before:
 - Inner dipole: 0.35 mm instead of 0.25 mm.
 - Outer dipole: 0.45 mm instead of 0.35 mm.

 This is coherent considering coil smeared-out properties.

40 GPa Cable blocks + 130 GPa copper wedges \cong 70 GPa Coil 20 GPa Cable blocks + 130 GPa copper wedges \cong 50 GPa Coil

 Stress distribution is checked at the different load steps.

Mechanical design update (II)

Gap	Original gap	ID Press	ID Spring Back	Before OD Press	OD Press	OD Spring back	Cool- down	108% Power.
Α	0,2	-	-	opens	0,13	opens	opens	0,08
В	0,1	-	-	opens	0,08	0,08	0,085	contact
С	0,5	-	-	opens	0,47	opens	opens	0,4
D	0,55	0,42	opens	opens	opens	opens	opens	opens
E	0,3	0,18	opens	opens	opens	opens	opens	opens
F	0,03	≅0,03	contact	contact	contact	contact	contact	contact
G	0,7	-	-	opens	0,55	opens	opens	opens
Н	0,6	-	-	opens	0,45	opens	opens	opens
1	0,03	-	-	contact	contact	contact	contact	^o contact

All values in mm

- **Motivation: There is no previous** experience in nested collaring structures.
- Undesired contact between parts could difficult/prevent the assembly.
- **Excessive gaps could spoil the field** quality or cause clattering during operation.

Outline

- Final magnetic design.
- Measurement of cable Young modulus.
- Final mechanical design.
- Short mechanical model.
- Conclusions.

Short mechanical model: Motivation

- A short mechanical model, as close as possible to the real magnet, becomes essential to:
 - Validate the assembly process of the nested dipoles: feasibility, gaps, ground insulation, collaring shoes...
 - Test part of the tooling to be used in the prototype assembly.
 - Validate the FE mechanical model.

Short mechanical model: Fabrication

Collar packaging tool (ID & OD)

Kapton bending tooling

Handling scissors (ID & OD)

Cierro de Investigaciones Energéticas, Medioambientales y Tecnológicas GOBIERNO MINISTERIO DE ESPAÑA DE ECONOMÍA, INDUSTRIA Y COMPETITIVIDAD dummy coils

Collaring shoe preforming tooling

MT25 – Fernando Toral – 28th August 2017

Short mechanical model: Assembly

OBIERNO E ESPAÑA MINISTERIO DE ECONOMIA, INDUSTR

Short mechanical model: Instrumentation

Three sections are monitored by strain gauges (ID & OD)

Four strain gauges per collar: on both sides of the collars and noses

Four displacement gauges: micrometric precision

> All gauges configuration, installation, cabling and data acquisition have been developed in-house

Short mechanical model: Inner collaring test

Gap [mm]	Press force [ton]	Average stress measured [MPa]	Average stress simulated [MPa]
0.5	26	52	-
0.4	34	71	-
0.3	40	90	-
0.2	40	106	108
Spring-back	-	72	74

- At the minimum gap of 0.2 mm, expected stress at the collar nose was about 108 MPa, very close to the average of the measurements of the gauges (106 MPa).
- When the pressure is relieved, the inner dipole is left in its "spring-back" position. Calculated strain is 74 Mpa and the average of all measures is 72 MPa.
- The collapsible mandrel is retired without effort from the inner dipole aperture.

Short mechanical model: Outer collaring test

- At the minimum gap of 0.2 mm, expected stress at the collar nose was about 110 MPa, not far from the average of the measurements (124 MPa). However, gauges in the lower half measured about twice the pressure of the upper ones.
- The coils have not tried to collapse inwards. Gaps are correct.
- Strain gauges show the same unbalance at the "spring back" position. However the average is 89 MPa, very close to the 81 MPa expected from the simulation results.
- The assembly is repeated two times and measurements were balanced. We think that the assembly process was not right the first time.

Gap [mm]	Press force [ton]	Average stress measured [MPa]	Average stress simulated [MPa]
0.5	33	76	-
0.4	38	90	-
0.3	40	105	-
0.2	40	124	110
Spring-back	-	89	81

Conclusions

- Final 3D magnetic design is achieved with a specific optimization approach taking into account three different powering scenarios.
- Mechanical results are updated with the measured Young modulus of the cable blocks. Each load step has been simulated and stress distribution is valid.
- A short mechanical model has been produced and successfully tested to validate the feasibility of the assembly. Test results are in good agreement with simulations.
- The design and fabrication of tooling has been already started. Production of the first prototype is ongoing. Winding of first coil will be done next month.

Thank you for your attention

Back-up slides

MT24(II): Magnet conceptual design

Iron Saturation

Ciemat Centro de Investiga Energéticas, Medica

HILUMI

Self-supporting collars

