Status of the Activity for the Construction of the HL-LHC Superconducting High Order Corrector Magnets at LASA-Milan

Massimo Sorbi
Franco Alessandria, Giovanni Bellomo, Francesco Broggi, Augusto Leone, Vittorio Marinozzi, Samuele Mariotto, Andrea Musso, Antonio Paccalini, Danilo Pedrini, Mauro Quadrio, Marco Statera, Maurizio Todero, Ezio Todesco and Carlo Uva

Mon-Mo-Or1
Scope

- The INFN-LASA follows the design, construction and test of the 5 prototypes of the high order (HO) corrector magnets for the interaction regions of HL-HiLUMI.
- This activity is founded by INFN (Magix “activity”), and with an agreement CERN contributes for about 50%.
Magnet zoo (prototypes)

Sextupole
OD=320 mm
Completed & successfully tested

Octupole
OD=320 mm
Completed & successfully tested

Decapole
OD=320 mm
Completed & in test phase

Dodecapole
OD=320 mm
Ordering phase

Skew quad
OD=460 mm
Ordering phase

Physical length:
- 90-120 mm from 6-pole to 10-pole
- 430 mm 12-pole normal
- 840 mm 4-pole skew

Conductor type: NbTi
Peak field on cond.: 2-3 T
Operating current: 105-180 A
Margin on load line: 50-60%

M. Sorbi, INFN-LASA, Milan
The design is based on superferric configurations.
Large bore aperture (150 mm)
Nb–Ti coils operating in a static superfluid He bath at 1.9 K.
Large margin on load line (about 60%, corresp. to $\Delta T \approx 4.5$ K).
- The detailed 3D design of all magnets completed, to fulfill the requirements

<table>
<thead>
<tr>
<th>Magnet order</th>
<th>Type</th>
<th>Integr. field at r=50 mm</th>
<th>Magnetic Length</th>
<th>Coil Peak Field</th>
<th>Magnetic stored energy</th>
<th>Operating Current</th>
<th>Turn per coils</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quadrupole</td>
<td>S</td>
<td>1.016</td>
<td>0.671 m</td>
<td>3.53 T</td>
<td>36 kJ</td>
<td>182 A</td>
<td>754</td>
</tr>
<tr>
<td>Sextupole</td>
<td>N,S</td>
<td>0.064</td>
<td>0.140 m</td>
<td>2.14 T</td>
<td>1.2 kJ</td>
<td>132* A</td>
<td>216*</td>
</tr>
<tr>
<td>Octupole</td>
<td>N,S</td>
<td>0.046</td>
<td>0.099 m</td>
<td>2.06 T</td>
<td>1.1 kJ</td>
<td>105 A</td>
<td>228</td>
</tr>
<tr>
<td>Decapole</td>
<td>N,S</td>
<td>0.026</td>
<td>0.097 m</td>
<td>1.73 T</td>
<td>0.5 kJ</td>
<td>105 A</td>
<td>228</td>
</tr>
<tr>
<td>Dodecapole</td>
<td>N</td>
<td>0.086</td>
<td>0.471 m</td>
<td>1.44 T</td>
<td>7.8 kJ</td>
<td>105 A</td>
<td>432</td>
</tr>
<tr>
<td>Dodecapole</td>
<td>S</td>
<td>0.017</td>
<td>0.089 m</td>
<td>1.44 T</td>
<td>~0.9 kJ</td>
<td>105 A</td>
<td>~172</td>
</tr>
</tbody>
</table>

* Value of the sextupole prototype, to be scaled for the series production.
The scope was:
- $T_{\text{max}} < 250$ K (for safety reason)
- $\Delta V_{\text{max}} < 300$ V (to limit the magnet test at room temp. to 2 kV)

The protection study has been executed with the code QLASA

Comparison between calculation and prototype tests validate the results.
Quench Protection II

- Study has been performed to avoid dump resistor for energy extraction (to simplify the circuit)
- Results: all magnets fulfill the requirements except the Quadrupole

Max voltage & hot spot temperature without dump resistor

<table>
<thead>
<tr>
<th></th>
<th>4-pole</th>
<th>6-pole</th>
<th>8-pole</th>
<th>10-pole</th>
<th>12-pole-N</th>
</tr>
</thead>
<tbody>
<tr>
<td>V-max (V)</td>
<td>633</td>
<td>135</td>
<td>70</td>
<td>36</td>
<td>251</td>
</tr>
<tr>
<td>T-max (K)</td>
<td>132</td>
<td>164</td>
<td>131</td>
<td>122</td>
<td>147</td>
</tr>
</tbody>
</table>

- With a $R_{\text{dump}} = 1.5 \, \Omega$ (grounded in the middle), the Quadrupole V-max goes to 287 V
Prototyping I

• The prototyping of 6-pole, 8-pole and 10-pole has followed the same procedure:

 – Winding & Impregnating the S.C. coils at LASA

 – Test of single coil in LHe (to validate coil construction)

 – Ordering of the mechanical components of the magnets
 – Assembling of the components & coils at LASA
 – Quality Assurance tests
 – Powering test of the magnet in LHe and He-II
Different solutions tested and validated in the magnets.

Insulating materials compliant with the design radiation dose of 25 MGy

Casing and ground insulation in Duratron (PEI, 30% glass fiber)

Solution full in BTS2 (resin S2 laminate) or hybrid BTS2/Duratron
Prototyping III
Mechanics

- The iron laminations have been precisely machined by wire electro-erosion, with tolerance of +/-0.03 mm

The external alignments grooves allows to align the laminations with an external rectified tool

M. Sorbi, INFN-LASA, Milan
Prototyping IV
Electrical Connections

• The soldering of coil & voltage taps connections is performed on Cu tracks on 2 separate Arlon disks.
Prototyping V

- Three of the five magnets have been completed

6-pole
Completed
Tested

8-pole
Completed
Tested

10-pole
Completed
To be tested

12-pole & 4-pole
Assigned to industry

M. Sorbi, INFN-LASA, Milan
12-pole and 4-pole have larger dimensions
Coils cannot be built at LASA
Construction has been assigned to industry after a tender
Completion in 2018
Powering Test

- The magnet is inserted in a vertical cryostat for test in LHe and He II (2.2 K)

- **Scope of tests:**
 - To reach nominal and ultimate current (108% of nominal) and stay for 1 h
 - Verify limiting current (@ 4.2 K)
 - Verify memory on training after thermal cycle

- 6-pole tested in Feb. 2016: excellent results already reported last year (97% of s.s.l.)

- 8-pole tested in May 2017

- 10-pole test in Sept. 2017

- 12-pole and 4-pole in 2018
• Reached required performance with 3 quenches
• Proved to have stable operation at ultimate current (108% of nominal) and at 150% of nominal.
• Slow training towards short sample and reached 90% of s.s.l. after ~20 quenches.
Conclusions

- The prototyping of the 5 high order corrector magnets of HL-LHC is ongoing at INFN-LASA (Milan).
- The first prototype, the sextupole, was completed and tested in 2016.
- The octupole, completed and tested in 2017: it reached required performance.
- The decapole is completed and powering test is in progress.
- No substantial issues have been identified in magnet constructions.
- The dodecapole and skew-quadrupole construction has been assigned to industry.
- The completion and test of the magnets is expected in May 2018 (dodecapole) and in September 2018 (skew-quadrupole).
To Giovanni Volpini (1963-2016), who initiated, worked and leaded this activity at LASA & CERN