This work was supported in part by the MEXT and in part by the Japan Science and Technology Agency (JST) under the Strategic Promotion of Innovative Research and Development Program.

Design and technical development of a high-resolution 1.3 GHz NMR magnet

<u>Y. Yanagisawa</u>¹, M. Hamada², H. Ueda³, S. Matsumoto⁴, T. Noguchi⁴, Y. Suetomi^{5,1}, S. Takahashi^{6,1}, T. Takao⁶, R. Piao¹, M. Takahashi¹, and H. Maeda¹ ¹RIKEN, ²JASTEC, ³Okayama Univ., ⁴NIMS, ⁵Chiba Univ., ⁶Sophia Univ.

Mon-Af-Or5-01

- 1. Concept of a 1.3 GHz NMR
- 2. Stress design of Bi-2223 coils
- 3. Screening current of the REBCO innermost coil
- 4. Protection of the REBCO innermost coil

Requirements for a 1.3 GHz NMR magnet

- 1.3 GHz (30.5 T) high-resolution NMR applicable to amyloid protein analysis to cope with Alzheimer's disease
- Compact magnet and less stray field (5 G line: <8 m)
- No helium consumption, by using cryocoolers
- Operated in the driven mode or if possible in the persistent current mode

Concept and first design options

- **1.** High HTS field contribution (>23 T) for compactness
- 2. Bi-2223 dominant design with a REBCO innermost coil
- **3.** LAYER-WOUND COILS for homogeneous magnetic field and future opportunity of persistent current operation

Technical issues on the designs

- Bi-2223: Easy to control, without unexpected degradation
 => MECHANINCAL STRESS MANAGEMENT
- REBCO: Hard to control, due to a large screening current-induced field and degradation
 => PREDICTION OF SCREENING CURRENT and PROTECTION
- Persistent current operation
 => SUPERCONDUCTING JOINTS (Wednesday morning plenary)

- 1. Concept of a 1.3 GHz NMR
- 2. Stress design of Bi-2223 coils
- 3. Screening current of the REBCO innermost coil
- 4. Protection of the REBCO innermost coil

Hoop stress tolerance under bending strain

99% I_c recovery stress (reversible stress) measured at 77 K

Joint resistance:

- ~50 nΩ/joint at 77 K
- Sufficiently small for driven mode operation

Axial compressive stress tolerance

• Much higher than -50 MPa of the 1.3 GHz magnet designs

Y. Yanagisawa et al., MT25, Mon-Af-Or5-01, RAI Amsterdam, Amsterdam, the Netherlands, Aug. 28, 2017

4 K

*B*_{ex}: 17 T

Short summary

- Bi-2223 coils are unexpected-degradation-free and are "DESIGNABLE" with mechanical stress management.
- To avoid a short circuit due to strong electromagnetic forces, coating insulated Bi-2223 conductor is being developed.

- 1. Concept of a 1.3 GHz NMR
- 2. Stress design of Bi-2223 coils
- 3. Screening current of the REBCO innermost coil

4. Protection of the REBCO innermost coil

Simulated screening current-induced field of the **REBCO** innermost coil

3D FEM with the fast multipole method Ueda et al., *IEEE TAS* **23** (2013) 4100805

Short summary

- The magnitude of screening current effects from the REBCO innermost coil is not so large.
- We will also simulate screening currentinduced field from the large volume of the Bi-2223 coils.

- 1. Concept of a 1.3 GHz NMR
- 2. Stress design of Bi-2223 coils
- 3. Screening current of the REBCO innermost coil

4. Protection of the REBCO innermost coil

Layer-wound coil has never received the benefit of NI...

Extremely long field delay

Conclusions

Conclusions

- Bi-2223:
 - Designable with mechanical stress management
 - Avoiding short circuit due to strong electromagnetic forces
- REBCO:
 - LNI (layer no-insulation) method for the combination of self-protection, homogeneous field and persistent current operation.

Further viewpoint: REBCO or Bi-2223 ?

	REBCO -dominant design	<mark>Bi-2223</mark> -dominant design
Unexpected degradation and thermal runaway	Frequent	Rare
Field stability and homogeneity	Low	Better
Magnet size	Very compact (higher J)	Compact
Superconducting joint	Yes	Not yet

• For a high-resolution 1.3 GHz NMR, we prefer a Bi-2223 dominant design with taking advantage of a REBCO innermost coil.

• Towards 1.5 GHz (35 T), more REBCO is required.