25th International Conference on Magnet Technology, Amsterdam
Aug 28, 2017

SangGap Lee¹, Seungyong Hahn², Sangwon Yoon³, Jae Young Jang¹, Young Jin Hwang¹, Jun Hee Han¹, Jaemin Kim³, Kang Hwan Shin³, Kyekeun Cheon³, Hunju Lee³, Sehwan In⁴, Yong-Ju Hong⁴, Hankil Yeom⁴, Kwanglok Kim⁵, Kwangmin Kim⁵, Min Cheol Ahn⁶

¹ Korea Basic Science Institute, Daejeon, Korea

² Seoul National University, Korea

³ SuNAM, Gyeonggi, Korea

⁴ Korea Institute of Machinery & Materials, Daejeon, Korea

⁵ National High Magnetic Field Lab, FSU, Florida, USA

⁶ Kunsan National University, Korea

Project's Milestones up until ASC2016

- □ Launched the project (Aug. 2014).
- □ Decided to apply SuNAM's stainless-steel-clad (thickness ~ 1-2 um) REBCO tapes (Jun. 2015).
- □ Delivered first-ever the Metal-Clad No-Insulation All-REBCO Magnet, called MC-NI DEMO, as a large-scale user magnet (Feb. 2016)
- □ Found DEMO is field-chargeable > 10 times faster than its NI counterpart (Mar. 2016).
- □ Succeeded in detecting a NMR signal (Jul. 2016).
- □ Discovered first-ever a feasibility that metallic cladding can be a new knob for mitigation of screening currents (Aug. 2016).
- □ As-fabricated field homogeneity of ~ 830 ppm at 10mmDSV (Aug. 2016).

Progress of 9.4 T 100 mm Metal-Clad NI NMR Magnet

- □ The magnet was designed by NHMFL (May, 2016), constructed by SuNAM and KIMM, and is almost at the stage of final assembly before the cryogen-free cooling.
- □ Will be tested by KBSI and field-mapped and ferro-shimmed by KBSI and KNU.
- Adopted resistive Metallic-cladding (MC) No-Insulation (NI) and Multi-Width techniques ensuring self-protecting and enhanced field performance.
- □ Charging test completed at LN2 temperature and magnetic field of 1.7 T generated

DEMO: 3 T 100 mm MC-NI All-REBCO Magnet

- □ Delivered a 3 T 100 mm MC-NI All-REBCO Magnet, as a proto-type, called DEMO (Feb. 2016).
- Designed by NHMFL (May, 2015), constructed by SuNAM & KIMM, and tested by KBSI.
- □ Under field-mapping and ferro-shimming by KBSI and KNU : field homogeneity was ~ 830 ppm (@ 10mm DSV) as fabricated and as of now ~ 50 ppm (@ 10mm DSV).
- First-ever attempt to verify the feasibility of metal-clad NI all-REBCO magnet as a large-scale high-field DC user magnet

Parameters	
HTS conductor	SuNAM GdBCO
Magnetic field	> 3.0 [T]
Operating temperature	< 20 [K]
Operating current	201 [A]
Inductance	0.465 [H]
Warm bore diameter	64 [mm]

Cooling Performance & Temperature Stability of DEMO

- Applied a two-stage pulse tube cryo-cooler with a cooling power of 22W@ 20 K
- Cooling down completed in about 1 and a half days
- Temperatures measured at the three locations (top, middle, bottom) of the coils stay stable well below 14 K during and after magnetic field ramping to the target current 201 A at a reasonably high rate of 0.1875 A/s.

Charging Delay Suppression during Field Ramping

- □ Charging delay during field ramping is an intrinsic drawback of the NI magnet.
- Along with the metal-clad (MC; clad thickness ~ 1-2 um) DEMO, charging delay suppressed substantially.
- □ Charging time constant (L/R) of the MC DEMO is 13 times smaller than that of its NI counterpart.
 - \rightarrow Measured Rct of MC magnet : about 130 [$\mu\Omega \cdot m^2$]
 - \rightarrow Reported *Rct* of NI counterpart magnet : about 10 [$\mu\Omega \cdot m^2$].

[Equivalent lumped circuit of an NI coil]

L: Inductance

Rc: Characteristic resistance

Ir: radial current through turn-to-turn contact

IPS: power supply current

 $I\theta$: Spiral current

Charging time constant = L/R_c ~ 10 s

[Comparison of charging delay between the 3 T MC magnet and its NI counterpart]

Successful Detection of NMR Signal!

- Using a high-resolution 400MHz NMR hardware and operation software in development and test by **KBSI** and SciMedix
- 129MHz 1H NMR spectrum of water obtained at 3 T, the central field of DEMO

[Digital NMR transmitter/receiver]

[Full view of NMR spectrometer console]

NMR Signal Detected!

[129MHz (3T) 1H NMR spectrum of water]

Huge Drift of Screening Current Field (SCF)

- MC-NI DEMO shows a long-term drift of magnetic field, a 10-Gauss drift lasting for 8 hours or longer, which is well resolved by NMR.
- □ The drift is huge in viewpoint of NMR but so tiny to be resolved by Hall magnetometer.
- □ The drift is not a sort of charging delay due to no-insulation definitely, as the delay should complete in 10 tau (~ 100 s) after ramping up stops. Rather than charging delay, it is a field drift due to slow relaxation of screening currents.

SCF Suppression Due to Metal-Cladding Effect

- Current Sweep Cycles (CSC) is known to be effective for mitigation of SCF in insulation REBCO.
- MC DEMO shows no substantial delay in the field following CSC but NI counterpart does.
- CSC reduces the field drift effectively and increases DC field of about 100 G immediately after CSC completed.
 - Various CSC takes out diamagnetic portion of the field effectively.

< Simulated magnetic field following CSC >

REF 2: J. Y. Jang et al. "Design, Construction and 13 K Conduction-Cooled Operation of a 3 T 100 mm Stainless Steel Cladding All-REBCO Magnet," 2017, Supercond. Sci. Technol., at press: https://doi.org/10.1088/1361-6668/aa8354

Precision Field Mapping System

- Composed of an NMR spectrometer and a 3-D linear positioner.
- The NMR using a small volume of NMR-active sample to increase a field resolution, a high-Q tank circuit, and a high-power RF amplifier for high precision measurement.

0.3 mmΦ x 1 mmH

< three-axis step-motorized linear positioner >

< high-Q tank circuit >

< NMR sensor >

< mapping pathway >

MHz

Axial displacement [mm] 129.45 129.48 129.51 129.54 129.57 Frequency [MHz]

-64864 Hz/cm **Z1** -25126 Hz/cm Х Hz/cm -54772 Z2 -23017 Hz/cm² ZX -5730 Hz/cm² ΖY 2856.5 Hz/cm² Hz/cm² C2 217.98 **S2** 5704.2 Hz/cm² **Z**3 -1274.7 Hz/cm³ 7493.2 Hz/cm³ Z2X Z2Y 432.1 Hz/cm³ ZC2 2504.5 Hz/cm³ ZS2 -2659.3 Hz/cm³ C3 -407.26 Hz/cm³ **S**3 1553.5 Hz/cm³

128.67987

< NMR spectra along the pathway >

REF 1: J. Y. Jang et al, Manuscript in Preparation

< magnetic-field map along the pathway > 10

< calculated field gradients >

Design and Fabrication of Ferro-shim for DEMO

<1st try shim>

- Optimal design of an array of ferro-shims to be placed on a cylindrical surface
- □ Design with the structure of a concentric multiple cylindered shimming stack

	Before shim
20 (MHz)	128703368.5
Z1 (Hz/cm)	-48523.95
X (Hz/cm)	798.85
Y (Hz/cm)	-63964.78
Z2 (Hz/cm ²)	-2716.68
ZX (Hz/cm ²)	-11553.2
ZY (Hz/cm ²)	-3788.19
C2 (Hz/cm ²)	-2343.05
52 (Hz/cm ²)	1691.7
Z3 (Hz/cm ³)	-2833.3
Z2X (Hz/cm ³)	-490
Z2Y (Hz/cm³)	5044.23
ZC2 (Hz/cm ³)	-226.27
ZS2 (Hz/cm ³)	1058.06
C3 (Hz/cm ³)	2213.29
S3 (Hz/cm³)	2254.22
ppm	634
	-

<3rd try shim>

12 mil.
10 mil.
9 mil.
8 mil.
7 mil.
6 mil.
5 mil.
4 mil.
3 mil.
2 mil.
Thickness
(1 mil. = 0.025 mm)

< Designs of single-cylindered ferro-shims >

< Mapping results >

Fabrication

< Design of double
-cylindered ferro-shims >

Fabrication

<2nd try shim>

Evaluation of Ferro-shims - 50 ppm @ 10 mmDSV

□ With a double-cylindered stack of ferroshims, ~ 50 ppm @ 10 mmDSV, the best as of now

□ With single-cylindered stacks of ferroshims, best homogeneity ~ 110 ppm

	Before Shim	Inner Shim	Inne Outers
<i>Z0</i> (MHz)	128.7034	128.7872	128
Z1 (Hz/cm)	-48523.95	7850.8	-2!
X (Hz/cm)	798.85	-13170.7	-20

	Before Shim	Inner Shim	Outer shims
<i>Z0</i> (MHz)	128.7034	128.7872	128.7439
Z1 (Hz/cm)	-48523.95	7850.8	-2520.06
X (Hz/cm)	798.85	-13170.7	-2690.52
Y (Hz/cm)	-63964.78	-11596.4	-2719.96
<i>Z2</i> (Hz/cm ²)	-2716.68	4941.2	1554.95
ZX (Hz/cm ²)	-11553.2	-7658.3	2490.85
ZY (Hz/cm ²)	-3788.19	-9616.2	-3441.17
$C2$ (Hz/cm 2)	-2343.05	-3737	-2032.85
S2 (Hz/cm ²)	1691.7	1351.6	-1375.65
<i>Z3</i> (Hz/cm ³)	-2833.3	458.7	1161.73
Z2X (Hz/cm ³)	-490	4388.3	5479.61
$Z2Y$ (Hz/cm 3)	5044.23	623.1	6387.84
ZC2 (Hz/cm³)	-226.27	194.9	1632.67
ZS2 (Hz/cm³)	1058.06	584.6	-2085.69
C3 (Hz/cm³)	2213.29	1781	505.24
S3 (Hz/cm³)	2254.22	-643.4	-843.52
Uniformity	624	168	52.0

<Field map along a cylindrical helix (17mmΦx10mmH)>

<Field gradients before & after ferro-shimming>

<Field map on a spherical helix (Φ10mm DSV)>

(ppm)

Reproducible Field Gradient during Ferroshimming

- ☐ After installation of ferro-shims, CSC technique was applied to reduce the SCF.
- ☐ Field mapping was repeatedly carried out to obtain a temporal dependence of field gradients with a stack of ferro-shims. Due to the efficient mitigation of SCF due to metallic cladding, calculated field gradients and homogeneity are almost the same with respect to trials.

✓ Magnetic field mapped along a helical path

	1	2	3	4	5	6	7	8	AVG(8)	STDEV(8)
Z0	128768077.4	128767728.6	128767308	128768284	128768047	128767337.2	128766855.7	128767275.3	128767614.2	496.3081359
Z1	-371.6917822	-404.2400961	-1255.206054	-86.50404388	-395.5340494	-644.6592532	-491.270539	-518.3889728	-520.9368488	337.1508833
X	-8566.361388	-8525.149379	-8478.236926	-8624.36179	-8613.114003	-8657.8017	-8529.431501	-8418.702333	-8551.644878	80.00887666
Υ	659.2793377	642.7341965	582.9658026	547.7569877	856.5229678	752.0331201	760.4224391	744.1631606	693.2347515	102.9940879
Z2	3693.926648	3837.630925	4181.220343	3500.462225	3678.045132	3824.244308	3249.451806	3974.618665	3742.450007	285.4268046
ZX	89.59081043	642.7364898	675.7283615	25.97068737	284.2213748	178.7869657	220.15021	358.5199134	309.4631016	239.6515106
ZY	-2317.385585	-2379.03501	-2170.851555	-1983.66149	-2438.565456	-2231.515674	-2281.179978	-2314.663741	-2264.607311	140.2735759
C2	314.0039997	463.6920302	426.0970298	101.8595761	283.6391078	381.563623	317.8535168	326.3960667	326.8881188	109.7421117
S2	474.8446527	825.4147751	757.3098596	605.3548961	353.5675819	455.1428101	504.8005425	393.0369021	546.1840025	169.7437812
Z3	246.4285079	1508.442237	-909.379216	407.5426303	402.569448	766.4933975	428.6482915	488.4762329	417.4026911	666.2591913
Z2X	7515.646892	6955.20751	6676.840194	7760.641613	7111.775233	7325.716556	7087.608962	6337.132383	7096.321168	453.9253643
Z2Y	839.6490975	124.7571229	374.152027	212.1074209	18.45480342	516.168125	292.8013701	437.7906403	351.9850759	255.9491286
ZC2	1166.825032	845.1496404	974.3327808	1256.457039	797.4291022	1115.692652	1135.97288	928.3850241	1027.530519	164.842737
ZS2	-3959.993538	-3804.171355	-4085.120396	-4491.788149	-3769.234769	-3846.734174	-4030.88772	-3906.20635	-3986.767056	231.1906633
C3	-105.2412993	-286.8102692	-124.7256432	35.53768968	-6.265337175	-17.54112561	-94.50524778	-89.74094493	-86.16152219	98.63094009
S3	-955.5322104	-1130.320131	-1188.942824	-973.827165	-816.4597113	-828.8565143	-988.9288692	-781.9283981	-958.0994779	147.3357791

REF 1: J. Y. Jang et al, Manuscript in Preparation

Survival of DEMO after Sudden Discharge

- There were two times unexpected power supply trips during a long-term operation, which leads to sudden discharges of the magnet, yet the magnet survived without any degradation.
- An amount of power supply current leaks through the turn-to-turn contacts, which prevents local heating and consequent damage of the magnet. MC also shows NI's self-protecting behavior.

REF 1: J. Y. Jang et al, "Design, Construction and 13 K Conduction-Cooled Operation of a 3 T 100 mm Stainless Steel Cladding All-REBCO Magnet." 2017, Supercond. Sci. Technol., at press; https://doi.org/10.1088/1361-6668/aa8354

10

41080

Elapsed time [s]

After the sudden discharge

Summary

- ☐ Field homogeneity of ~ 50 ppm at 10mmDSV, the best as of now
- Calculated field gradients and homogeneity are almost the same with respect to mapping trials, maybe due to the efficient mitigation of SCF due to metallic cladding.
- □ We have the same field gradients and homogeneity before and after shutting down current.
- Metal-clad DEMO survived after sudden discharge.
- With 9.4 T magnet, charging test was completed at LN2 temperature and magnetic field of 1.7 T generated.

Thank You!

<u>SangGap Lee</u>¹, Seungyong Hahn², Sangwon Yoon³, Jae Young Jang¹, Young Jin Hwang¹, Jun Hee Han¹, Jaemin Kim³, Kang Hwan Shin³, Kyekeun Cheon³, Hunju Lee³, Sehwan In⁴, Yong-Ju Hong⁴, Hankil Yeom⁴, Kwanglok Kim⁵, Kwangmin Kim⁵, Min Cheol Ahn⁶

¹ Korea Basic Science Institute, Daejeon, Korea

² Seoul National University, Korea

³ SuNAM, Gyeonggi, Korea

⁴ Korea Institute of Machinery & Materials, Daejeon, Korea

⁵ National High Magnetic Field Lab, FSU, Florida, USA

⁶ Kunsan National University, Korea

Background

Spatial harmonics

- Systematical analysis of field distribution
- Good for active shimming
- B_z can be expressed using associated Legendre polynomials.

$$B_z = \sum_{n=0}^{\infty} \sum_{m=0}^{m=n} (n+m+1)r^n P_n^m(\cos\theta) [A_{n+1}^m \cos m\phi + B_{n+1}^m \sin m\phi]$$

In Cartesian coordinate,

$$B_z = A_1^0 + 2A_2^0 z - 3A_2^1 x - 3B_2^1 y + 3A_3^0 (z^2 - (1/2)(x^2 + y^2)) - 12A_3^1 zx - 12B_2^1 zy + \cdots$$

Field Gradients

Z0

Z1

X

Y

Z2

ZX

ZY

Background

Field mapping

Gathering (x, y, z, B₇) sets

- → Above equation can be solved using the sets.
- → All coefficients can be obtained.

Active shimming

- All field gradients should be as small as possible except Z0.
- Shim coil current can be calculated based on mapping results.

Nuclear Magnetic Resonance (NMR)

Structural Analysis of Biomolecules

- Structure analysis ofNatural Substance,Proteins
- Drug design

NMR's Schematic diagram

Synthesis of Macromolecules

- Functional macromolecules
- Synthetic Compound

NMR signals can be generated by applying radio-frequency electromagnetic wave to a nuclear-spin sample in magnetic field.

Nuclear Magnetic Resonance (NMR)

¹H-¹⁵N HSQC Spectrum

Bruker BioSpin

Rainer Kerssebaum, "NMR now and then - Sensitivity, Magnets, Technology" EURACT-NMR Workshop, Karsruhe, Germany (2010)

Benefits with HTS Wires

Field Limit of LTS SC Wires

Whole Wire Critical Current Density (A/mm²

Benefits with 2G-HTS REBCO Magnet

- **Huge space occupation of high-field LTS NMR magnet**
- Existing NMR magnet of 900 MHz or higher requiring dedicated building
- 2G HTS magnet enabling dramatically reduced occupation thanks to far higher Jc

(18.8 T)

(21.2 T)

(30.5 T)

700 MHz Size

Figure in courtesy of Dr. Hideaki Maeda @ RIKEN

(14.1 T)

(16.5 T)

Development of 9.4 T 100 mm Metal-Clad NI All-REBCO NMR Magnet Embarked

International Collaboration

Conduction-cooled Reduced-Vibration Cryostat F

2G HTS Magnet Design,Fabrication, Evaluation & Shim

KB

NMR System Integration & Evaluation

Benefit with No-Insulation (NI) Wiring

- When a quench occurs, the current in an NI magnet bypass the quench spot through turn-to-turn contacts from its spiral path.
- The magnet can remain safe. → "self-protecting characteristic"

<Quench behavior in a NI coil>

< Over current test results of a REBCO single-pancake coil up to 125 A >

REF: Seungyonh Hahn, Dong Keun Park, Juan Bascunan and Yukikazu Iwasa, "HTS Pancake Coils Without Turn-to-Turn Insulation", IEEE Trans. Appl. Supercond., vol. 21, no. 3, 1592-1595, June 2011

Benefit with Metal-Clad NI Wires

Although the NI winding technique makes REBCO coils more robust and effective, the charging delay of the magnetic field remains a major issue.

To tackle this charging delay issue, a 1-um thin stainless steel layers is clad on to SuNAM's REBCO tapes. stainless steel layer increase the contact resistance of the NI coil and reduce the charging

- Charging characteristics (a) without metal cladding (b) with metal cladding

REF: Jaemin Kim, Sangwon Yoon, Kyekun Cheon, Kang Hwan Shin, Seungyong Hahn, Dong Lak Kim, SangGap Lee, Hunju Lee, Seung-Hyun Moon, "Effect of Resistive Metal Cladding of HTS Tape on the Characteristic of No-Insulation Coil", IEEE Trans. Appl. Supercond., vol. 26, no. 4, 4601906, June 2016

Challenge with 2G HTS Tapes

Screening-current induced field (SCF) generated during charging

- □ SCF hurts HTS magnets' performance in temporal stability and spatial uniformity severely.
- ☐ Mitigation of SCF is critically important for successful development of 2G HTS NMR magnet.

SCF degrades magnetic field's stability and uniformity of 2G HTS magnet.

REF: E. H. Brandt, et al., "Shaking of the critical state by a small transverse ac field can cause rapid relaxation in superconductors," Supercond. Sci. Technol., 2004

Progress of 9.4 T Metal-Clad NI NMR Magnet

- "NI and MW conduction-cooled metal-clad all-REBCO magnet" for 400 MHz (9.4 T)
 NMR (KBSI-SuNAM-NHMFL-KIMM-KNU-SNU)
 - ☐ The magnet was designed by NHMFL (May, 2016) and is under construction by the SuNAM. The magnet is about to be installed and tested at KBSI.
 - ☐ High homogeneous NMR magnet: field homogeneity is targeted lower than 1 ppm (10mm DSV) with ferro-shims and an active RT shim.
 - ☐ Metal-clad NI and MW technique ensuring self-protecting and enhanced field performance

Design Parameters	
HTS conductor	SuNAM ReBCO
Magnetic field	> 9.4 [T]
Operating temperature	< 20 [K]
Operating current	187.36 [A]
Inductance	8.5 [H]
Magnet inner diameter	100 [mm]

______ [자석 충 ⇒ 현재 1.7T 달성(액체질

DEMO: 3 T 100 mm MC-NI All-REBCO Magnet

- □ Delivered a 3 T 100 mm MC-NI All-REBCO Magnet, as a proto-type , called DEMO (Feb. 2016).
- □ Designed by NHMFL (May, 2015), constructed by SuNAM & KIMM, and tested by KBSI
- □ Under field-mapping and ferro-shimming by KBSI and Kunsan Nat'l Univ. : field homogeneity was ~500 ppm (10mm DSV) as fabricated and currently much lower than 100 ppm (10mm DSV).
- Resistive metallic-cladding NI technique applied because we expected radial resistance to shorten the charging delay while NI maintaining the self-protecting characteristic of the magnet
- Multi-width (MW) technique applied to significantly enhance the overall current density of a magnet
- First-ever attempt to verify the feasibility of metal-clad NI all-REBCO magnet as a large-scale high-field DC user magnet
- Composed of 32 double-pancake coils conduction-cooled by a two-stage pulse tube cryo-cooler

Charging Delay Suppression during Field Ramping

- Charging delay reduction in 3 T MC magnet
 - Charging delay during field ramping is an intrinsic drawback of the NI magnet. MC technique substantially reduces the charging delay.
 - □ Charging time constant (L/R) of the MC magnet is 13 times smaller than that of its NI counterpart.
 - \rightarrow Calculated *Rct* of MC magnet : about 130 [$\mu\Omega \cdot m^2$]
 - \rightarrow Calculated Rct of NI counterpart magnet : about 10 [$\mu\Omega \cdot m^2$].

[Comparison of charging delay between the 3 T MC magnet and its NI counterpart]

Precision Field Mapping by NMR

- □ Mapping the magnetic field in 3-D space using an NMR spectrometer and a 3-D linear positioner.
- □ Using a small volume of NMR-active sample to increase a field resolution, a high-Q tank circuit, and a high-power RF amplifier for high precision measurement.

Z0	128.67987	MHz
Z1	-64864	Hz/cm
Х	-25126	Hz/cm
Υ	-54772	Hz/cm
Z2	-23017	Hz/cm ²
ZX	-5730	Hz/cm ²
ZY	2856.5	Hz/cm ²
C2	217.98	Hz/cm ²
S2	5704.2	Hz/cm ²
Z3	-1274.7	Hz/cm ³
Z2X	7493.2	Hz/cm ³
Z2Y	432.1	Hz/cm ³
ZC2	2504.5	Hz/cm ³
ZS2	-2659.3	Hz/cm ³
C3	-407.26	Hz/cm ³
S 3	1553.5	Hz/cm ³

< calculated field gradients >

Evaluation of Ferro-shim for DEMO

	Before Shim	1st shim	2nd shim	3rd shim
ZO (MHz)	129.74	129.52	129.63	129.54
<i>Z1</i> (Hz/cm)	-53071.1	-17959.7	-12847.8	-6404.1
X (Hz/cm)	27148.4	-23298	-1578.1	3969
Y (Hz/cm)	-72899.9	-2638.5	-4483.8	-968.4
<i>Z2</i> (Hz/cm ²)	-5580.4	15329.9	15410.2	-1599.2
ZX (Hz/cm²)	-7861.6	-16928.6	-15283.5	-12021.7
ZY (Hz/cm²)	-1776.1	14596.8	18864	18719.2
C2 (Hz/cm ²)	-4948.9	-397.4	11407.8	-1585.2
S2 (Hz/cm²)	2491.8	-752.9	-4594.6	7601.9
<i>Z3</i> (Hz/cm ³)	-2787.2	-1358.4	-7905.4	2414.4
Z2X (Hz/cm³)	3619.1	32133.6	23403.9	13775
Z2Y (Hz/cm³)	2718.2	-32006.1	-27592.6	-14525.3
ZC2 (Hz/cm³)	2537.7	7721.9	1627.2	4030.8
ZS2 (Hz/cm³)	1864.7	3661.8	-299.3	-2392.1
C3 (Hz/cm ³)	-2214.6	4041.1	-2758.5	-2067.6
S3 (Hz/cm³)	971.4	753	1625	3293.5
Uniformity (ppm)	634	262	195	113

<Field gradients before & after ferro-shimming>

<Field map on a cylindrical helix (Φ17mm/30mm(height))>

10mmDSV inhomogeneity

<Field map on a spherical helix (Φ10mm DSV)>

634 ppm \rightarrow 113 ppm (implemented as of Dec. 2017)

→ lower than 50 ppm (currently)

Need for NMR Magnetometer

- Need for a highly accurate magnetic field measurement system
 - To evaluate improvement of the magnet's field homogeneity resulting from shimming
 - To measure drift behavior of the magnetic field by long-term relaxation of screening currents induced during charging which is one of the big issues to tackle in the NMR application of **REBCO** wires

NMR

Use and evaluation of the developed NMR spectrometer as a magnetometer

[NMR spectrometer]

[128MHz (3T) 1H NMR spectrum of water]

Dia. 10mm Height 10mm 6 revolutions <Mapping path>

NMR magnetometer helical.avi

Dia. 15mm Height 30mm 16 revolutions

< Hall magnetomter measured >

Reproducible Field Gradient during Ferroshimming

- ☐ After installation of ferro-shims, CSC technique was applied to reduce the SCF.
- ☐ Field mapping was repeatedly carried out to obtain a temporal dependence of field gradients with a stack of ferro-shims. Due to the efficient reduction of SCF due to metallic cladding, calculated field gradients and homogeneity are almost the same with respect to trials.

ppm@1cm

65

60

57

61

✓ Magnetic field mapped along a helical path

	1	3	5	7	9	11	13	15	AVG(15)	STDEV(15)
Z0	128744467.8	128744142.1	128743820.5	128744494.2	128744159.7	128743592.1	128744391.3	128744287.7	128744177	502.85
Z1	-4618.034138	-4083.231239	-3535.069854	-3768.241999	-3936.264958	-4195.9413	-3586.994288	-4182.42844	-3942.45	479.02
X	-2487.071247	-2151.704997	-2583.002607	-2571.300943	-2576.956967	-2525.949353	-2662.33075	-2734.488761	-2530.21	140.81
Υ	-2672.842903	-2823.641415	-2062.980745	-2285.573645	-2621.800293	-2555.256442	-2685.54293	-2588.247302	-2573.06	192.76
Z2	2306.850233	2115.364544	1548.363098	2303.890235	2102.948028	2573.789657	2716.740427	2330.454221	2128.6	464.29
ZX	2429.750461	2216.615921	2425.374885	2610.581484	2696.021375	2710.077602	3232.731347	2868.288913	2596.91	243.91
ZY	-4303.722974	-4224.278353	-4796.958478	-4672.536315	-4566.379438	-4566.288191	-4630.937042	-4761.185653	-4407.95	351
C2	-2249.980085	-2156.014527	-2687.643976	-2460.838752	-2306.19723	-2360.100535	-2211.42948	-2382.889955	-2305.78	150.88
S2	-1464.120664	-994.2018592	-1579.872276	-1803.853536	-1583.806529	-1573.428377	-1548.659164	-1633.676705	-1484.63	200.5
Z3	-2088.23214	-1645.574903	-102.7588523	-686.2650618	-1146.329121	-1159.92464	-618.5493891	-999.7419192	-898.57	842.83
Z2X	4963.403984	4749.590825	5088.412237	4910.282462	4534.289252	4540.867433	5461.40804	4236.778007	4713.18	411.46
Z2Y	8297.882114	7945.928861	6793.303461	7433.8796	8255.146906	8057.418961	9159.555309	8267.92822	7923.29	718.54
ZC2	2418.740185	2513.968455	2666.874437	2434.674363	2454.150881	2390.343367	2689.073438	2378.408774	2437.58	277.78
ZS2	-2035.695961	-2484.177664	-1880.868339	-1869.089584	-1872.948459	-1882.236989	-1364.171753	-1809.538526	-1939.39	262.23
C3	490.2646854	65.77908892	667.2197366	810.0150056	610.0205076	577.591893	631.9026994	506.9709147	526.9	193.11
S3	-1086.868949	-1232.735984	-1445.080631	-926.8676727	-1133.701609	-1074.717024	-967.5779229	-1048.410623	-1106.17	165.59

63

64

63

64

61.9

3.1