High Field Twin-aperture Dipole Magnet R&D for SPPC Pre-study

Qingjin XU
On behalf of the SPPC magnet working group
Institute of High Energy Physics (IHEP)
Chinese Academy of Sciences (CAS)
2017.8.28
Contents

• Introduction to CEPC-SPPC
• Conceptual Design of the SPPC Dipole Magnets
• R&D of Superconducting Rutherford Cables
 \(NbTi, Nb_3Sn, HTS\)
• R&D of 12-T Twin-aperture model dipole
 \(Design, Fabrication and test plan\)
• Domestic Collaboration Towards HTS SPPC
• International Collaboration
• Summary
CEPC is an 240-250 GeV Circular Electron Positron Collider, proposed to carry out high precision study on Higgs bosons, which can be upgraded to a 70-150 (Upgrading phase) TeV pp collider SPPC, to study the new physics beyond the Standard Model.

50/100 km in circumference

The 1st CEPC International Workshop 2017: http://cepcws17.ihep.ac.cn/
SPPC Accelerator and Magnets

SPPC
- **50 100 km in circumference**
- C.M. energy 70-150 (Upgrading) TeV
- Timeline
 - Pre-study: 2013-2020
 - R&D: 2020-2030
 - Eng. Design: 2030-2035
 - Construction: 2035-2042

Main dipoles

\[E[GeV] = 0.3 \times B[T] \times \rho[m] \]

- Field strength: 20 12~24 (Upgrading) Tesla
- Aperture diameter: 40~50 mm
- Field quality: \(10^{-4}\) at the 2/3 aperture radius
- Outer diameter: **900 mm** in a 1.5 m cryostat
- Tunnel cross section: 6 m wide and 5.4 m high

Conceptual design of the SPPC 12-T magnet with IBS and common coil configuration

6-m Tunnel for CEPC-SPPC

Q. Xu, MIT25, Amsterdam, Aug 27 - Sep 1 2017
SPPC Design Scope (201701 version)

• Baseline design
 ➢ Tunnel circumference: 100 km
 ➢ Dipole magnet field: 12 T, iron-based HTS technology (IBS)
 ➢ Center of Mass energy: >70 TeV
 ➢ Injector chain: 2.1 TeV

• Upgrading phase
 ➢ Dipole magnet field: 20 -24T, IBS technology
 ➢ Center of Mass energy: >125 TeV
 ➢ Injector chain: 4.2 TeV (adding a high-energy booster ring in the main tunnel in the place of the electron ring and booster)

• Development of high-field superconducting magnet technology
 ➢ Starting to develop required HTS magnet technology before applicable iron-based wire is available
 ➢ ReBCO & Bi-2212 and LTS wires be used for model magnet studies and as an option for SPPC: stress management, quench protection, field quality control and fabrication methods

Top priority: reducing cost! Instead of increasing field
J_e of IBS: 2016-2025

Modified version by Q. Xu

- **REBCO B∥ Tape Plane**
 - SuperPower "Turbo" Double Layer Tape, measured at NHMFL 2009
- **REBCO B⊥ Tape Plane**
- **Tape Plane 45 μm substrate**
 - SuperPower tape, ~5 μm Cu, measured at NHMFL 2017
- **Expected IBS 2025**
 - Y. Ma (IEECAS)
- **2212**
 - 121×18 filament OST strand with NHMFL 50 bar Over-Pressure HT. J. Jiang et al. ASC’16
- **SuperPower “Turbo” Double Layer Tape, measured at NHMFL 2009**

IBS 2016
- **Nb-Ti**
 - 4.22 K High Field MRI strand (Luvata)
- **4.2 K LHC insertion quadrupole strand** (Boutboul et al. 2006)

High-J_c Nb3Sn
- **Compiled from ASC’02 and ICMC’03 papers (J. Parrell OI-ST)**

Iron-Based Superconductor
- Much lower cost and better mechanical properties expected

- **Q. Xu, MT25, Amsterdam, Aug 27 - Sep 1 2017**
- **Y. Ma (IEECAS)**

January 2017

Whole Wire Critical Current Density (A/mm², 4.2 K)

Applied Magnetic Field (T)

Q. Xu, MT25, Amsterdam, Aug 27 - Sep 1 2017

Peter J. Lee

World’s first 100 m Fe-based superconductor by IEE, CAS, China (Aug. 2016)

115 m long 7-filament wire

Minimum $J_c > 12000 \text{A/cm}^2$ @10T, 4.2K

At 4.2K, 10T, transport J_c distribution along the length of the first 115 m long 7-filament Sr122 tape
The 12-T Fe-based Dipole Magnet

- The required length of the 0.8 mm IBS is 6.1 Km/m
- For 100-km SPPC accelerator, 3000 tons of IBS is needed
- Target cost of IBS: 20 RMB (~2.6 Eur) /kAm @12 T
The 12-T Fe-based Dipole Magnet

ROXIE simulation results

<table>
<thead>
<tr>
<th>Term</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Field (T)</td>
<td>12.020868</td>
</tr>
<tr>
<td>Magnet Strength (T/(m^{n-1}))</td>
<td>12.0209</td>
</tr>
</tbody>
</table>

Normal Relative Multipoles \((1,D,-4):\)

- \(b_1: 10000.00000\) b_2: 0.00000 b_3: -0.83157
- \(b_4: 0.00000\) b_5: 0.92916 b_6: -0.00000
- \(b_7: 0.00983\) b_8: -0.00000 b_9: 0.95010
- \(b_{10}: -0.00000\) b_{11}: 3.81956 b_{12}: 0.00000
- \(b_{13}: -0.26538\) b_{14}: 0.00000 b_{15}: -0.35810
- \(b_{16}: -0.23049\) b_{17}: 0.00000 b_{18}: 0.23220

<10^-4 field quality within 2/3 aperture

Stray field around the dipole with R= 500 mm

With 500 mm Yoke OD
Superconducting Rutherford Cable R&D

Collaboration between WST, NIN, Toly Electric and IHEP

Y. Zhu (WST), Y. Zhao (Toly), C. Li (NIN), Q. Xu et al.

Rutherford cabling machine at Toly

Nb$_3$Sn Rutherford cable

Bi-2212 Rutherford cable

Superconducting Rutherford cable

Insulated cable

Cable insulation

Dielectric strength test ~5kV

Q. Xu, MT25, Amsterdam, Aug 27 - Sep 1 2017
Nb₃Sn cable fabrication with WST strand

Y. Zhu (WST), Y. Zhao (Toly) et al.

<table>
<thead>
<tr>
<th>股数</th>
<th>绞缆角</th>
<th>节距/mm</th>
<th>尺寸/mm</th>
<th>填充系数</th>
<th>1c损降/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>17.13°</td>
<td>50</td>
<td>8.22*1.48</td>
<td>81.3%</td>
<td>3.64%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7.87*1.48</td>
<td>85%</td>
<td>3.43%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7.95*1.52</td>
<td>81.9%</td>
<td>1.28%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7.83*1.48</td>
<td>85.4%</td>
<td>4.33%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7.87*1.44</td>
<td>87.3%</td>
<td>4.58%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7.87*1.52</td>
<td>82.7%</td>
<td>1.41%</td>
</tr>
<tr>
<td>36</td>
<td>18.46°</td>
<td>93</td>
<td>15.38*1.50</td>
<td>86.5%</td>
<td>4.63~6.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15.29*1.49</td>
<td>87.5%</td>
<td>8.96~10.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15.23*1.45</td>
<td>90.3%</td>
<td>5.76~9.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15.19*1.44</td>
<td>91.2%</td>
<td>8.71~13.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15.16*1.39</td>
<td>94.7%</td>
<td>9.43~11.31</td>
</tr>
</tbody>
</table>

微观结构

![Microstructure Image](image1)

![Microstructure Image](image2)

Q. XU, MT25, Amsterdam, Aug 27 - Sep 1 2017
Superconducting Rutherford Cable R&D

Bi-2212 cable fabrication with NIN strand

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Cable 1</th>
<th>Cable 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter Φ (mm)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Wire processing</td>
<td>300℃退火</td>
<td>200℃退火</td>
</tr>
<tr>
<td>Number of Strands</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Cable size (mm²)</td>
<td>1.90×4.77</td>
<td>1.78×4.21</td>
</tr>
<tr>
<td>Filling factor</td>
<td>70.5%</td>
<td>85.2%</td>
</tr>
<tr>
<td>Length</td>
<td>2.5米</td>
<td>2米</td>
</tr>
</tbody>
</table>

◆ 成功绞制两根8线电缆
◆ 绞制过程中电缆变形均匀
◆ 每根线材外观完整无破损
◆ 线材芯丝无明显破损

Cabling

Bi-2212 Cable

Before cabling

After cabling

Q. Hao, C. Li (NIN), Y. Zhao (Toly) et al.
Superconducting Rutherford Cable R&D

Y. Zhu (WST), Y. Zhao (Toly), C. Li (NIN), Q. Xu et al.

~700 m NbTi and Nb₃Sn cables have been fabricated by Toly Electric (Wuxi, China), Jc degradation <3%; R&D of HTS cable is ongoing.

24股NbTi缆193m 38股NbTi缆142m 20股Nb₃Sn缆138m 18股NbTi缆300m
R&D of 12T twin-aperture dipole magnet

Operation load line at 12 T: ~80% at 4.2K

NbTi+Nb$_3$Sn, 2*φ10 aperture → All Nb$_3$Sn, 2*φ20 aperture → Nb$_3$Sn+HTS, 2*φ30 aperture

The 1st high field accelerator magnet in China!

C. Wang, K. Zhang, Y. Wang, D. Cheng, E. Kong (USTC), Q. Xu et al.
R&D of 12T twin-aperture dipole magnet

Coil winding ➔ Heat reaction ➔ VPI ➔ Magnet assembly ➔ Test

Q. XU, MT25, Amsterdam, Aug 27 - Sep 1 2017
R&D of 12T twin-aperture dipole magnet

Coil winding ➔ Heat reaction ➔ VPI ➔ Magnet assembly ➔ Test
R&D of 12T twin-aperture dipole magnet

To be assembled and tested next month!

ReBCO and IBS insert coils to be fabricated and tested in 6 months.
Domestic Collaboration

“Applied High Temperature Superconductor Collaboration (AHTSC, 实用化高温超导材料产学研合作组)” was formed in Oct. 2016.

- **Goal:** 1) To increase the J_c of IBS by 10 times, reduce the cost to 20 Rmb/kAm @ 12T & 4.2K, and realize the industrialization of the conductor; 2) To reduce the cost of ReBCO and Bi-2212 conductors to 20 Rmb/kAm @ 12T & 4.2K; 3) Realization and Industrialization of iron-based magnet and SRF technology.

- **Working groups:** 1) Fundamental science investigation; 2) IBS conductor R&D; 3) ReBCO conductor R&D; 4) Bi-2212 conductor R&D; 5) performance evaluation; 6) Magnet and SRF technology.

- **Collaboration meetings:** every 3 months, to report the progress and discuss plan for next months.
For now

- IHEP, IMP, WST and ASIPP will work together on the CCT magnet and HTSCL development for HL-LHC.
- Funding application is ongoing from MOST, NSFC and CAS.

In Future: Leading more activities for the HL-LHC collaboration with expected funding.

Benefit from the HL-LHC collaboration

- Speed up R&D process of the advanced superconducting magnet technology in China.
IHEP & CERN Collaboration

March 2017, Launch of CERN-China IHEP collaboration for HiLumi LHC

Glyn Kirby, Ezio Todesco (CERN)
Summary

• **SPPC latest baseline**: 12 T all-HTS (iron-base superconductor, IBS) magnets with 100 km circumference and > 70TeV center-of-mass energy. **Cost reduction is the top priority**!

• **SPPC Upgrading phase**: 20~24 T all-HTS (IBS) magnets with the same tunnel and 125~150 TeV center-of-mass energy.

• Starting to develop HTS magnet technology before applicable iron-based wire is available: ReBCO & Bi-2212 and LTS wires be used for model magnet studies and as an option for SPPC.

• 12 T NbTi+Nb$_3$Sn and Nb$_3$Sn+HTS model magnets under development for SPPC pre-study.

• **Domestic and international collaborations are being formed to pursue the advanced HTS superconductor and magnet R&D.**

Q. XU, MT25, Amsterdam, Aug 27 - Sep 1 2017
Welcome to the CEPC
International Workshop 2017
Nov. 6-8 2017, IHEP, Beijing, China

http://cepcws17.ihep.ac.cn/

International Advisory Committee
Young-Kee Kim, U. Chicago (Chair)
Barry Barish, Caltech
Hesheng Chen, IHEP
Michael Davier, LAL
Brian Foster, Oxford
Rohini Godbole, CHEP, Indian Institute of Science
David Gross, UC Santa Barbara
George Hou, Taiwan U.
Peter Jenni, CERN
Eugene Levichev, BINP
Lucie Linssen, CERN
Joe Lykken, Fermilab
Luciano Maiani, Sapienza University of Rome
Michelangelo Mangano, CERN
Hitoshi Murayama, UC Berkeley/PMU
Katsunobu Oide, KEK
Robert Palmer, BNL
John Seeman, SLAC
Ian Shipsey, Oxford
Steinar Stapnes, CERN
Geoffrey Taylor, U. Melbourne
Henry Tye, IAS, HKUST
Yifang Wang, IHEP
Harry Weerts, ANL

Local Organizing Committee
Xinzhong Lou, IHEP (Chair)
Qingfeng Cao, PKU
Joao Guimaraes Costa, IHEP
Jie Gao, IHEP
Yuanning Gao, THU
Hongjian He, THU
Shan Jin, IHEP
Gang Li, IHEP
Jianbei Liu, USTC
Yajun Mao, PKU
Qing Qin, IHEP
Manqi Ruan, IHEP
Meng Wang, SDU
Na Xu, CONU
Haijun Yang, SJTU
Hongbo Zhu, IHEP

Email: cepcws17@ihep.ac.cn
Tel: +86 10 82230054
Thanks for your attention!