

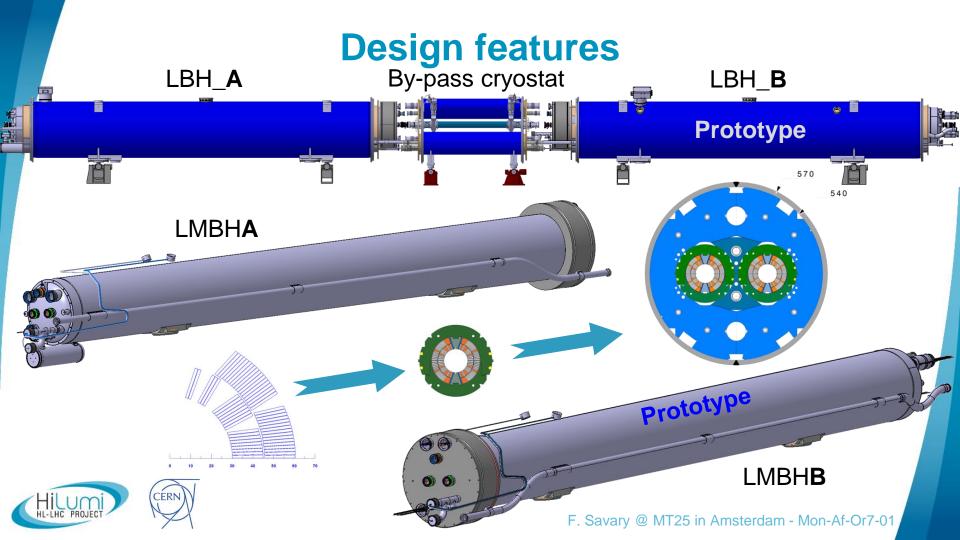
Design and Construction of the Full-length Prototype of the 11T Dipole Magnet for the High Luminosity LHC Project at CERN

F. Savary, B. Bordini, M. Daly, L. Fiscarelli, A. P. Foussat, L. Grand-Clement, F. Lackner, C. H. Loffler, M. Semeraro, D. Smekens, D. D. Ramos, J.L. Rudeiros Fernandez, H. Prin, R. Principe, L. Bottura, L. Rossi, S. Izquierdo Bermudez

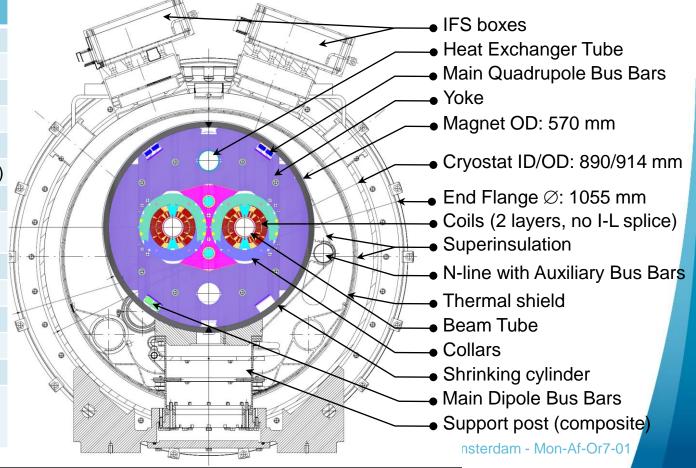
MT25 – RAI Amsterdam – August 27 – September 1, 2017 – Mon-Af-Or7-01

OUTLOOK

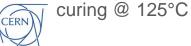
- Introduction
- Design features of the full-length prototype
- Main manufacturing steps
- Status of the prototype construction
- Quality control
- Production Plan
- Concluding remarks

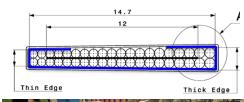

Introduction 15.66 m

The HL-LHC Project implies beams of larger intensity ⇒ additional collimators are needed in order to intercept and absorb higher beam losses (dynamic heat loads on cryogenics and risk to quench superconducting magnets)

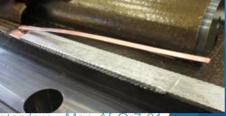

- Two collimators, one per beam, installed on either side of interaction point 7 (IP7) for both proton and heavy-ion collimation losses, in the Dispersion Suppressor region
- Replace a standard Main Dipole by a pair of shorter 11 T Dipoles producing the same integrated field of 119 T-m at 11.85 kA

Design features of the full-length prototype


Parameter	Value
Bore field @ I _{NOM}	11.23 T
Nominal current	11.85 kA
Operating T	1.9 K
Load line margin	20 %
Magnet aperture	60 mm
# turns (inner/outer)	56 (22/34)
Cable bare width	14.7 mm
Cable bare mid- thickness	1.25 mm
Keystone angle	0.79°
Strand diameter	0.7 mm
# strands per cable	40
Cu to non Cu ratio	1.15 ± 0.1
RRR after reaction	> 150
Minimum strand critical current, Ic (12T, 4.222 K)	438 A



Main manufacturing steps, 1

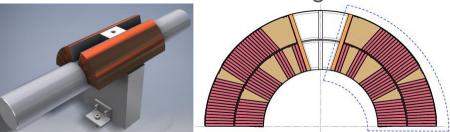

- Cable insulation and braiding
 - 25 mm wide, and 80 µm thick Mica tape rolled around the cable in a C-shaped profile, and a 70 µm thick layer of S2glass braided over the Mica layer
- Winding and binder curing
 - A ceramic binder is applied after winding to glue the turns together, and avoid the coil dislocation during subsequent steps
- Reaction and splicing
 - In a reaction fixture, under Ar atmosphere, 150 hours including 3 plateaus at 210, 400, and 650°C
- Impregnation
 - Resin system CTD101K, processed @ 60°C under vacuum, then pressurized to 3.5 bar before gelling @ 110 °C and

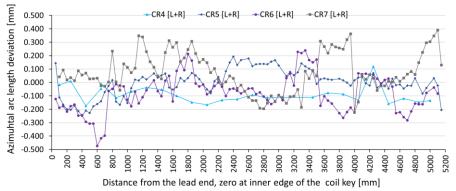
Main manufacturing steps, 2

- Coil pairing and assembly
 - With ground insulation, collaring shims, removable pole, cold bore tube, coil protection sheet, and collar packs
- Collaring
 - F = 10 MN/m (of which ~ 50 % pass in the coils / collars)
 - Stress in coils up to 180 MPa
- Yoking, and welding of the 15 mm thick shrinking cylinder made of 316LN
 - TIG welding, 13-15 passes and tensile stresses of the order of 220 MPa
- Cold mass finishing
 - Spool pieces, eletrical joints
 V-taps, instrumentation
 feed thru system, end

cern covers, N-line, supports, ...

Status of the prototype construction

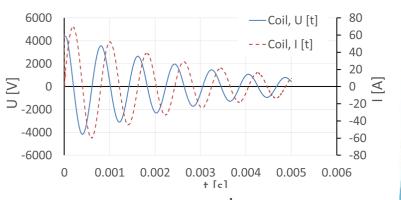


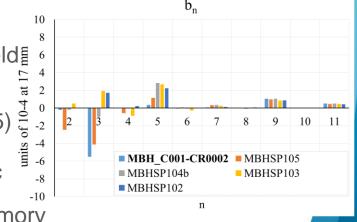

	Copper coil (tooling set-up)				
	Practice coil - Low grade - CR001				
	Practice coil - Low grade - CR002				
1	Proto P001 - Fall perf. coil - CR003				Rejected
1	Proto P001 - Full perf. coil - CR004				
Y	Proto P001 - Full perf. coil - CR005				
-	Proto P001 - Full perf. coil - CR006			_	
-	Proto P001 - Full perf. coil - CR007				
1	■ Step 1 - Winding ■ Step 2 - Reaction ■ S	1 tep 3 - Impregnation	2 Step 4 - Metrology	3 4 ■ Step 5 - Assembly fo	5 or collaring & Collaring
-	Coil ID	CR4	CR5	CR6	CR7
12.	Strand type RRP	132/169 & 150/169	150/169 & 144/169	108/127	108/128
	Strand type RRP Cu/Sc, average			108/127 1.14	108/128 1.15
		150/169	144/169		
	Cu/Sc, average	150/169 1.18	144/169 1.06	1.14	1.15
	Cu/Sc, average RRR, average Critical current, <i>I_c</i> [A]	150/169 1.18 250.6	144/169 1.06 168.0	1.14 293.6	1.15 297.0
	Cu/Sc, average RRR, average Critical current, <i>I_c</i> [A] (12 T, 4.222 K), average	150/169 1.18 250.6 404.6	144/169 1.06 168.0 451.6	1.14 293.6 449.0	1.15 297.0 460.7

Quality control, 1 (a selection)

- A comprehensive Manufacturing and Inspection Plan (MIP) has been developed
- There are 15 manufacturing and assembly procedures (work instructions)
- Quality Control reports are uploaded in the CERN Manufacturing and Test Folder (MTF)
- Coil geometry (coil branch)
 - Measured after impregnation
 - Measured stress free, i.e. no compression applied on the coil
 - 3D measurements carried out with portable CMM, type FARO Arm. Coil sections can be measured independently
 - Graph shows azimuthal length, used in the FEA model to determine the shimming plan such that

-150 MPa<stress<+15 MPa

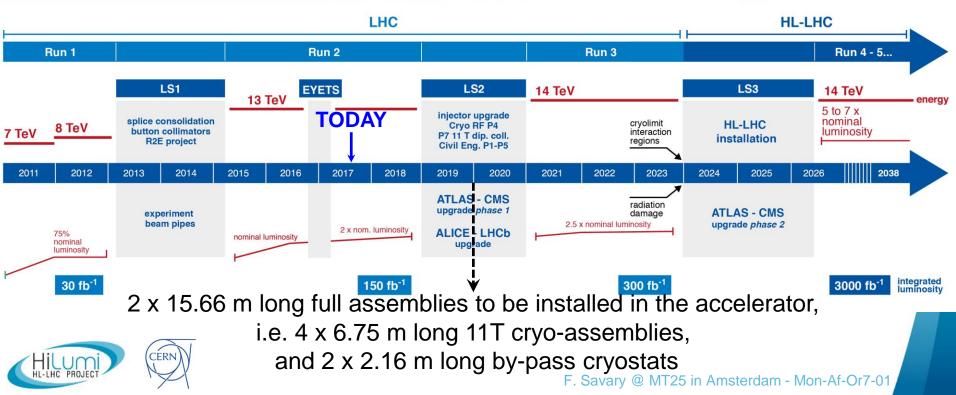




CERN

Quality control, 2 (a selection)

- Electrical tests
 - Throughout the magnet construction
 - Ensure electrical integrity of the magnet, including of the instrumentation and of the quench heaters
 - Exemple: discharge test on the coil is carried out at 4.7 kV corresponding to 85 V/turn
- Warm magnetic measurements
 - On collared coils, and on the magnet
 - Field quality, transfer function, and integral field
 - Normal multipoles of the 1st collared coils Prototype are here compared to the multipoles of the short models (SP103-SP105)
- Cold tests (in the beginning of 2018)
 - Training, quench protection studies, magnetic measurements, ramp rate dependency tests,
 - stability under holding current, and memory



The timeline of HL-LHC

LHC / HL-LHC Plan

Production plan

- Production will take place at CERN, in the Large Magnet Facility (bldg.180)
- Industrial contract for the production of the collared coils
 - Procurement process ongoing
 - Start production in January 2018
- Team currently in place for the production of the cold masses, the cryostating, and the cold tests
 - Install first magnet in the LHC machine during the last quarter of 2019

Concluding remarks

- The construction of the LMBHB Prototype is well advanced with the completion of the four coils, and of the first collared coils assembly
- A complete set of manufacturing and inspection procedures is ready for the series fabrication of the collared coils, and those regarding the construction of the cold mass assembly are in preparation
- The cold tests of the LMBHB Prototype will be carried out in the beginning of 2018, when the series production of the coils will start
- The production schedule is tight, as the magnets shall be in the accelerator in less than 2.5 years from now

HL-LHC PROJECT Thank you for your attention

Contributions to this conference relating to the 11 T Dipole Magnet for HL-LHC:

- [1] G. Willering *et al.*, "Comparison of Cold Powering Performance of 2-m long Nb₃Sn 2-m long 11T Model Magnets", Mon-Af-Or7-02.
- [2] S. Izquierdo Bermudez et al., "Quench Protection of the 11 T Nb₃Sn Di-pole for the High Luminosity LHC", Mon-Af-Po1-01.
- [3] J. Ferradas Troitino et al., "Applied metrology in the production of superconducting model magnets for particle accelerators", Thu-Af-Po4-01.
- [4] L. Fiscarelli et al., "Field quality of MBH 11-T dipoles for HL-LHC and impact on beam dynamic aperture", Mon-Af-Po1-01.
- [5] D. Pulikowski *et al.*, "Windability tests of Nb₃Sn Rutherford cables for HL-LHC and FCC", Wed-Af-Po3-01.
- [6] M. Daly *et al.*, "Multi-scale approach to the mechanical behaviour of epoxy impregnated Nb₃Sn Dipole Coils for the 11T Dipole", Mon-Mo-Or3-03.
- [7] A. Foussat *et al.*, "Frequency domain Diagnosis Methods for Quality Assessment of Nb₃Sn coil Insulation systems and impedance measurement", Mon-Af-Po1-01.
- [8] C. Scheurlein *et al.*, "Thermomechanical behavior of the HL-LHC 11 tesla Nb3Sn magnet coil constituents —, during reaction heat treatment", Wed-Af-Po3.10

T. Gradt *et al.*, "Friction-coefficient between the Ti6Al4V loading pole and the 316LN steel shims of the HU LHC 11 T magnets", Wed-Af-Po3.10