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Concept – CCT Dipole Magnet 

•  Canted windings in opposing directions produce dipole field  
•  Layers in multiples of two are added to achieve higher fields 
•  Transverse current density has natural cos-theta distribution 
•  Windings are placed in a mandrel with grooves – Ribs and spars in mandrel 

intercept Lorentz force leading to substantially reduced azimuthal stress 

Transverse current density with cos-theta 
distribution approaches a perfect dipole current 
density distribution 

Ribs Intercept Lorentz Force Winding Geometry 
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Summary of CCT Tests 

CCT1 
•  2.5 T short-sample dipole 
•  50 mm clear bore  
•  8  strd. NbTi cable   (0.65 mm SSC Outer) 
•  not impregnated 
•  11/2013: tested up to 2.5 T   
CCT2 
•  5.3 T short-sample dipole 
•  90 mm clear bore  
•  23 strd. NbTi cable   (0.8 mm SSC Inner) 
•  epoxy impregnated 
•  5/2015: tested up to 4.7 T   
CCT3 
•  10.0 T short-sample dipole 
•  90 mm clear bore  
•  23 strd. Nb3Sn cable (0.8 mm OST 54/61) 
•  3/2016: tested up to 7.4 T 
•  Suspect Conductor damage as possible cause of current limit 
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2-Layer Nb3Sn CCT Dipole Magnet Series 

•  CCT 2-layer series has nearly identical geometry 
o  90 mm diameter inner bore and 1 m physical length 
o  Mandrel grooves for 10 mm wide and 1.4 mm thick cable 

•  CCT3/4 use RRP 54/61 conductor (Jc > 3000 A/mm2 at 12 T) 
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Magnet Parameters CCT3/4 

Conductor 
Nb3Sn 

RRP 54/61 
Cu:SC ratio 0.85 
Inner Bore Diameter [mm] 90 
Cable Width [mm] 10.1 
Cable Thickness [mm] 1.4 
Number of Strands 23 

Cable Insulation 
S-glass Braid 
0.2 mm thick 

Iron Yoke Yes 
Impregnation Material CTD-101K 
Short Sample Current [kA] 19.3 
Short Sample Bore Field [T] 10.4 

Magnet Load Line for CCT4 



 
 

CCT3 Test Results 

•  CCT3 reached approximately 70% of short sample current after 28 
quenches 

•  Higher current can be achieved at higher ramp rates 
•  Most quenches in the same region (within 5 turns from end in inner layer) 
•  Observed instability believed to be due to conductor damage 
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Conductor Expansion Problem Has Been 
Alleviated Through Mandrel Design Changes 

•  CCT3 Cable protruded from the surface of the mandrel after heat treatment 
•  Dedicated experiment was used to define the expansion gap that is needed to 

maintain the cable position after heat treatment 
•  Gaps were machined into mandrel to allow for dimensional changes of the cable 

Cable Position After CCT3 HT CCT 4 Before HT CCT 4 After HT 

Measured Gaps After Heat Treatment Etched Cable Sample Extracted Cable 
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CCT Mandrels and Winding 

•  Aluminum Bronze mandrels are machined on 4-Axis CNC milling machine 
•  Conductor is placed into the groove without tension 
•  Pockets are machined into the mandrels for lead splices 

Coil Winding Machined Mandrel 

* Tooling Required is Minimal 
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CCT4 – Heat Treatment and 
Assembly 

•  Copper wire is used to force the cable to the bottom of the channel  
•  Mandrel is secured with hose clamps 
•  Cable is below mandrel surface after heat treatment 
•  Layers are wrapped with G10 sheets and inserted into the outer layer and shell 
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Cable Position After 
Heat Treatment of CCT4 

CCT4 Heat Treatment 
Configuration CCT4 Assembly 



 
 

CCT4 Magnet Impregnation 

•  Coils and shell assembly is impregnated with epoxy 
•  Simple tooling is used to create a seal from the bore to 

the ends of the shell 
•  Inside of outer layer and shell were mold-released to 

avoid energy release from delamination at the interfaces 
•  Next Step: Development of individual layer potting and 

assembly is under way 
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CCT4 Coil Assembly Sealing End Caps 

Potting Assembly 



 
 

Instrumentation 

•  Voltage taps at various turns in the coil 
•  Acoustic Sensors at 10 locations on the shell 
•  Strain gages on Shell (Pole and Midplane) 
•  Spot Heater and Thermometer in Groove 
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Strain Gages Spot Heater Acoustic Sensors 



 
 

CCT4 Test Results 

•  Reached 86% of round wire short sample after 85 quenches 
•  Maximum current is 17.6 kA 
•  Maximum bore field is 9.14 T (90 mm aperture) 
•  Training behavior changes at around 13 kA 
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CCT4 Training 



 
 

Critical Stress Regions 

•  Models are used to identify critical regions in the 
magnet where normal and shear stress is highest 
o  Stress in cable 
o  Shear stress in cable/groove interface 

•  Acoustic signal triangulation is used to determine 
location of mechanical events leading to a quench 

•  Data analysis is being performed to determine likely 
mechanisms for training 
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Stress at 18 kA 



 
 

Critical Interfaces 

•  Different bonding assumptions (glued and sliding) are used to 
understand the behavior of the layer-to-layer interfaces 

•  Data is compared to strain gage response during test 
o  Strain gage response remains linear during entire current ramp 
o  Good agreement with finite element models 

•  Analysis of acoustic events is also used to understand behavior at 
the layer-to-layer interfaces 
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Strain Gage and Modeling Results 
Shear Stress Bonded 

See Poster by L. Brouwer (Tue-Af-Po2.10) 

Shear Stress Sliding 

40 MPa 
10 MPa 



 
 

Conclusions 

•  Cable damage problem that was exhibited in CCT3 has been solved 
•  CCT4 achieved a maximum field strength of 9.14 T in a 90 mm bore 

without pre-load 
•  Large number of training quenches were required to reach maximum field 
•  Currently analyzing acoustic data that could lead to better understanding 

of training sources 
•  Next Steps in CCT Program 

o  Dedicated effort to understanding and reducing training 
o  Development of impregnation and assembly methods that allow for modifying 

the stress state in the coils and for coil layer addition and replacement 
o  Development of multi-layer magnets to demonstrate high field performance 
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