

 $\begin{array}{c} \mbox{Measurements of Dynamic Effects in FNAL 11 T} \\ \mbox{Nb}_3 \mbox{Sn Dipole Models} \end{array}$

Measurements of Dynamic Effects in FNAL 11 T Nb3Sn Dipole Models

August 28, 2017

G. Velev, T. Strauss, E. Barzi, G. Chlachidze, J. Di Marco, F. Nobrega, I. Novitski, S. Stoynev, D. Turrioni, A.V. Zlobin

 $\begin{array}{c} \mbox{Measurements of Dynamic Effects in FNAL 11 T} \\ \mbox{Nb}_3 \mbox{Sn Dipole Models} \end{array}$

Outline

- Motivation
- Short History
- Fast field change needs new measurement technologies: ADC/DSP DAQ systems and Printed Circuit Board (PCB) probes
- Dynamic effects in FNAL 11 T Nb₃Sn models
 - Main field;
 - Sextupole field component;
- Summary

Harmonics:
$$B_y + iB_x = B_i 10^{-4} \sum_{n=1}^{\infty} (b_n + ia_n) \left(\frac{x + iy}{r_o}\right)^{n-1}$$
 and $r_0 = 17 \text{ mm}$

Motivation

- Since 2001, Fermilab started a R&D program on Nb₃Sn magnets. At the Fermilab Test Facility, we performed a systematic measurements on models for: VHLC and LHC 11 T dipoles, LARP IR quadrupole upgrade.
- The results of this R&D program: Nb₃Sn magnets are a part of the HL-LHC upgrade: 11T dipoles, IR quadrupoles.
 - Recent results MBHSP/MBHDP published in:
 - S. Izquierdo Bermudez, L. Bottura, L. Fiscarelli, E. Todesco, "Decay and Snapback in Nb3Sn Dipole Magnets", IEEE Trans. Appl. Supercond., vol. 27, no. 4, 2017, Art. no. 4002306, on MBHSP/MBHDP show discrepancy with the NbTi expectations
- 15-17 T Nb₃Sn magnets are planned for FCC the goal is to learn as much as we can.

 $\begin{array}{c} \mbox{Measurements of Dynamic Effects in FNAL 11 T} \\ \mbox{Nb}_3 \mbox{Sn Dipole Models} \end{array}$

MTF – MBH 11 T model test

MBHSP04, MBHDP01

G. Velev

MT25, August '17

Short history

- Dynamic effects were discovered at early operation of the Tevatron observing a large chromaticity growth during the beam injection
- A detailed stand-alone measurement program was executed targeting the dynamic effects for Tevatron, HERA and LHC
- The measurements were done on NbTi dipoles a lot of data exist
- If we have to summarize in one slide

Measurements of Dynamic Effects in FNAL 11 T Nb₃Sn Dipole Models

Introduction to Decay and Snapback - based on NbTi data

 $\begin{array}{c} \mbox{Measurements of Dynamic Effects in FNAL 11 T} \\ \mbox{Nb}_3 \mbox{Sn Dipole Models} \end{array}$

 $\begin{array}{c} \mbox{Measurements of Dynamic Effects in FNAL 11 T} \\ \mbox{Nb}_3 \mbox{Sn Dipole Models} \end{array}$

Magnetic measurement probes

- Printed Circuit Board (PCB) probe
- UnBucked (UB) and DipoleBucked (DB) windings
 - 16-Layer, 13 turns/layer/track with outer trace at 14mm radius
 - Probe has two different length circuits
 - 130mm (close to twist pitch)
 - 26mm (1/5) for fine structure measurements

 $\begin{array}{c} \mbox{Measurements of Dynamic Effects in FNAL 11 T} \\ \mbox{Nb}_3 \mbox{Sn Dipole Models} \end{array}$

MBHSP/MBHDP CERN Nb₃Sn model measurements

- Recent results from MBHSP/MBHDP published in:
 - S. Izquierdo Bermudez, L. Bottura, L. Fiscarelli, E. Todesco, "Decay and Snapback in Nb3Sn Dipole Magnets", IEEE Trans. Appl. Supercond., vol. 27, no. 4, 2017, Art. no. 4002306.
- Similar decay in the main dipole field comparing to NbTi
- Inverse decay in the normal sextupole not observed in NbTi

 $\begin{array}{c} \mbox{Measurements of Dynamic Effects in FNAL 11 T} \\ \mbox{Nb}_3 \mbox{Sn Dipole Models} \end{array}$

Main Field decay

Reset current Back-porch dwell Magnet Iinj (A) (A) (min) 760 MBHSP02 100 0 MBHSP03 760 100 0 MBHSP04 760 100 0 MBHDP01 100 760 0 MBHDP01 760 0 0 MBHDP01 760 350 Ω MBHDP01 760 760 0 350 100 MBHDP01 0 MBHDP01 1170 100 0 MBHDP01 1420 100 MBHDP01 350 100 30 MBHDP01 760 100 30 ^aMBHDP01 is a double aperture magnet Back porch Flat-top 10000.0 current Linear (A) ramp 5000.0 Reset current Back-porch Injection current dwell current 0.0 L 0.0 4000.0 2000.0 6000.0 time (s)

 TABLE I

 Magnets and Current Profile Parameters

Magnet	I _{inj} (A)	b _{3,1} (units)	t ₁ (s)	b _{3,2} (units)	t ₂ (s)	b ₃ (units)
MBHSP02	760	6.9	290	0	-	6.9
MBHSP03	760	5.1	302	0	-	5.1
MBHSP04	760	6.5	329	0	-	6.5
MBHDP01	760	2.5	1949	1.0	172	3.5
MBHDP01	350	0.7	630	0.6	32	1.3
MBHDP01	1170	1.7	400	0	-	1.7
MBHDP01	1470	1.6	630	0.3	36	1.8

- Normal sextupole at 760 A injection:
 - average amplitude: b₃=5.5 units, comparing to 1-2 units in NbTi
 - time constant: $t_1 = 718$ s
- Inverse decay at the upper branch of the hysteresis curve, back porch at 760 A

Measurements of Dynamic Effects in FNAL 11 T Nb₃Sn Dipole Models

20 6 5 MBHSP02 4 MBHSP03 10 MBHSP04 Δb_3 (units) MBHDP01 3 2 0 1 $= a + b \cdot I + c \cdot I^2$ b_3^{hyst} -10 0 80 100 20 120 140 Ō 40 60 160 1050 650 850 time (s) Current (A) •In snapback parameterization: -Half Gaussian $-\varDelta b_3{}^{sb}(0) \sim t^2 \sim \Delta I$ Parabolic current ramp $\Delta b_3^{sb}(t) = \Delta b_3^{dec}(t_{inj}^{end}) \cdot \exp\left(\frac{-(I(t) - I_{inj})}{2}\right)$ $\Delta b_3^{sb}(t) = \Delta b_3^{dec}(t_{inj}^{end}) \cdot \exp(t_{inj}^{end})$ t_{sb}^2

Snapback in the normal sextupole

לכווווח) כמ

Measurements of Dynamic Effects in FNAL 11 T Nb₃Sn Dipole Models

Scaling law: linear correlation between the decay/snapback amplitude and ΔI needed to return back b₃ to hysteresis curve

Important feature: predictability

Summary

- We presented a summary of the dynamic effects, including decay and snapback in the main dipole and sextupole fields for the Fermilab 11 T model magnets
- The results clearly show that decay and snapback follow the same trend as NbTi dipoles comparison is done to the Tevatron and LHC main ring dipoles.
- A difference is observed in the amplitude of the decay in the normal sextupole, which found to be in average 5.5 units at injection, comparing to 1-2 in NbTi magnets.
- We found snapback time constants up to 10 times longer. This transfers to up to 80 A in ΔI .
- The ΔI is in order of magnitude larger than currents observed in the CERN MBH 11 T Nb₃Sn models
- In our 11 T dipoles measurements do not confirm the recent CERN MBH results about the inverse behavior in the normal sextupole
- Currently, new empirical models are introduced to describe the dynamic behavior of Nb₃Sn magnets. They are exploring partial magnetization of the filaments, flux jumps in Nb3Sn conductor and effects of the Wind&React processes
- To confirm these models more data from dedicated experiments are needed
 - next year, we will test of the 15 T dipole model as part of the US MDP program

 $\begin{array}{c} \mbox{Measurements of Dynamic Effects in FNAL 11 T} \\ \mbox{Nb}_3 \mbox{Sn Dipole Models} \end{array}$

Backup slides

 $\begin{array}{c} \mbox{Measurements of Dynamic Effects in FNAL 11 T} \\ \mbox{Nb}_3 \mbox{Sn Dipole Models} \end{array}$

Snapback parameterization

