

B. Auchmann (CERN/PSI), L. Brouwer (LBNL), S. Caspi (LBNL), J. Gao (PSI), G. Montenero (PSI), M. Negrazus (PSI), G. Rolando (CERN), S. Sanfilippo (PSI)

Electromechanical Design of a 16-T CCT Twin-Aperture Dipole for FCC

28.08.2017, MT25, Amsterdam, NE Work supported by the Swiss State Secretariat for Education, Research and Innovation SERI.

- CCT for FCC
 - Electromagnetic design
 - Mechanical design
- The PSI CCT model program
 - $-\operatorname{Roadmap}$
 - Status

- CCT for FCC
 - Electromagnetic design
 - Mechanical design
- The PSI CCT model program
 - Roadmap
 - Status

PAUL SCHERRER INSTITUT Preliminary designs as of Nov. 16'

.....

- Keys to an efficient CCT design:
 - 1. Thin spars
 - 2. Wide cable, large strands Increase J_{e} .
 - 3. Thin ribs.

• PSI's CCT Design for FCC

Homogeneous coil temperature after quench.

• Current: 18055 A

Layer #	n _s	cuNc	loadline marg. [%]	current marg. [%]	τ _{peak} [K]	V _{grnd} [V]	J _{cu} [A/mm²]
1	29	0.8	14.2	111	292	1133	1237
2	25	1.1	14.4	95	342	1264	1217
3	22	1.95	14.4	74	310	1156	1096
4	20	2.6	15.7	70	338	1144	1103

Temperature [K]

- FCC-wide conductor use:
 - Total: 9.77 kt (+30% wrt. cosine theta/block)
 - NonCu: 3.75 kt
 - Cu: 6.02 kt
- Total inductance: 19.2 mH/m
- Total energy: 3.2 MJ/m

Geometric/nl. iron harmonics: b2 <= 6 units b3,4,5, .. <= 1 unit

3-D Magnetic Design

- 3-D modeling results:
- Yoke cut-back not needed (20 mT peak-field enhancement in ends).
- Magnetic length with yoke equal to that of bare coil.
- **Physical length** minus magn. length = 53 cm; equal to 11 T magnet.
- **Peak field** minus main field at 16-T bore field: 0.14 T excluding self field.
 - comparable or lower than cos-theta due to continuous current distribution.

Mechanical Structure

- BERKELEY
- CCT does not require azimuthal prestress.
- Radial prestress on the midplane provided by "scissor" laminations

Albert Ijspeert, Jukka Salminen, CERN, Geneva, Switzerland Play of a few tenths of a mm (scale exaggerated) Iron scissor laminations (yoke) Dipole coils Spacers Shrinking cylinder 180 Ø560

SUPERCONDUCTING COIL COMPRESSION BY SCISSOR LAMINATIONS

STEP=3

SUB =1

TIME=3

RSYS=101

SY

2D Mechanical Design

Material properties as in EuroCirCol studies; see previous session.

3-D Periodic Simulation

- Generalized plane stress condition applied (following D. Arbelaez, L. Brouwer, LBNL)
- Initial 3-D results confirm 2D, but show distinct imprint of scissors lams

ightarrow increase protective shell thickness, change its material to iron

- Winding tests at LBNL and PSI.
- Successful tests with LD1 cable (@LBNL), LBNL CCT cable, and 11-T cable (@PSI).

inclined channel: successful

radial channel: de-cabeling

Manufacturability and Cost

- Deep channels, aspect-ratio ~10.
- Inclined channels \rightarrow 5-axis machining on long rotating cyl., machining tests under way.
- Selective Laser Melting (3-D printing) not successful.
- Collaboration with IWS Fraunhofer on fabrication of thin-lamination formers.
 - Laser weld-cutting.
 - Goal: improve scalability and cost.

- CCT for FCC
 - Electromagnetic design
 - Mechanical design
- The PSI CCT model program
 - $-\operatorname{Roadmap}$
 - Status

PSI Goals towards FCC Requirements

- BERKELEY LAB
- Thin spars
- Exterior Bladder and Key structure
- Impregnation system (NHMFL resin, etc.).
- Fast quench detection and CLIQ protection.
- Wide Rutherford cable.
- Inclined channels manufacturing.
- Former manufacturability and cost reduction (with Fraunhofer/industry).

Mechanical Structure

Bladder and Key technology chosen for tuneability and relative simplicity.

- Closed and pre-loaded pad gap for maximum-rigidity cage around coils.
- Steel pads to better match coil differential contraction.

Wed-Af-Po3.11, C. Calzolaio et al., Mechanical Structure for the PSI Canted-Cosine-Theta (CCT) Magnet Program 15

Conceptual Design Review and Arrival of First Hardware

- International conceptual design review of CD1 on June 26 at CERN (<u>http://indico.cern.ch/e/cd1cdr</u>).
- Green light to start procurement of a short mechanical structure for test purposes.
- First machining-, winding-, and reaction-trials under way. Impregnation trials to start shortly.

Test formers delivered.

Test winding completed.

Preparation for heat treatment.

- The CCT option was established as a valid contender in the FCC design study.
- The PSI program has been designed to be complementary to and closely coordinated with the LBNL program, pushing towards specific features needed in an FCC magnet.
- Former manufacturing process-development was started with IWS Fraunhofer.
- PSI benefits from generous support by LBNL, integrating deeply with their program, as well as from regular exchanges with many a CERN staff who share freely and are most helpful – THANK YOU!

