Possible Quench protection & detection methods for a conduction cooled MgB₂ magnet W. Kühlkamp¹, J.J. Kosse¹, M.M.J. Dhallé¹, C. Zhou¹, T.J. Dijkstra¹, P.C. Rem², H.J.M. ter Brake¹, H.H.J. ten Kate¹ ¹University of Twente, Enschede, The Netherlands; ²TU Delft, Delft, The Netherlands

UNIVERSITY OF TWENTE.

What kind of magnet?

The magnetic density separation (MDS) magnet is shown in the central image.

- a conduction cooled magnet made of MgB_2 .
- Poses challenge to the quench detection and protection.
- Less cooling power locally than helium bath.
- MgB2 has anomalous MQE and NZP velocity behavior, this is further discussed in the next box.

MQE & NZPV of MgB₂

The NZP velocity of MgB₂ conductors is significantly lower than NbTi (cm/s versus m/s). This makes it harder to find an appropriate detection method.

The MQE as function of temperature of MgB₂ has a maximum. This makes the operating temperature very important for the quench protection mechanism.

Protection & detection methods To assist in the choice of quench protection & detection a literature survey is done. The results of this survey is shown in the tables below.

A coup second

System	Mature technology	Possible detection time	HTS	Quench location	$\begin{array}{c} \text{Main} \\ \text{advantage}(s) \end{array}$	$\begin{array}{c} \text{Main} \\ \text{disadvantage(s)} \end{array}$
Voltage	+	Within tens of milliseconds	-	_	Simple and reliable	A lot of filtering is needed
Active power	+	Within tens of milliseconds	+	-	Low vulnerability to noise, easy to filter	Multi coil systems still needs additional filtering
Optical fiber	-	Within half a second	+	+	Real time sensing	Huge amount of data processing
Acoustic	-	Within milliseconds	+	+	Non-intrusive Easy to install	Hard to filter signal. Not all quenches are detected
Poynting vector	-	NA	+	-	Indirect measurement at room temperature	Not usable on magnets with iron yoke
Split conductor	-	NA	+/-	-	Sensitive to $10^{-12} \Omega$. Sense heating at I< <i<sub>c</i<sub>	Engineering challange to split conductor

Possible protection & detection method

NZP velocity might be to slow, this needs testing.

For detection voltage taps might be possible For protection heaters are probably needed, due to:

- low NZP velocity
- Details are also dependent on magnet system layout
- Simulations are needed to study this method further.

Thu-Af-Po4.09-17

System	Suitable Suitable for		Energy	Main	Main
	for HTS	high field magnets	dump	advantage(s)	disadvantage(s)
ernal dump resistor	+	-	External	Simple and reliable	High resistance means high voltages
odivision of coils	+	+	External	Limits voltages. Quench back mechanism	Each subdivision needs protection and detection
eating up e magnet: Heater	-	+/-	Internal	Uniform heating of outer edges of the magnet	Heat generation causes engineering challenge
eating up le magnet: CLIQ	-	+/-	Internal	Uniform internal heating	Can cause short circuits
a coupled econdary	+	+	Internal/ Transfer	Fast current decay	additional copper causes AC losses

wires.

 $\lambda/2$ 30 cm Winding Packheight

10 cm

This research is part of the program **Innovative Magnetic Density Separation** (IMDS), which is supported by NWO domain Applied and Engineering Sciences and partly funded by the Ministry of **Economic Affairs**. NWO Applied and Engineering Sciences

What's next?

• NZP measurements on MgB₂

 Development of custom quench analysis code

dedicated to MgB₂ magnets

References

H. Van Weeren (2007) Yi Li et al. (2012) E. Ravaioli (2015) E. Ravaioli et al. (2014) Yi Li et al. (2014) Q. Wang et al. (2012) S. Yu et al. (2008) X. Huang et al. (2010) S. Chen et al. (2012) T. Wakuda et al. (2012) W. Weijers et al. (2014) M. Hilal et al. (1994) J. Pfotenhauer et al. (1993 Y. Takahashi et al. (2005) J. Schultz et al. (1997) N. Nanato et al. (2001) J. Schwartz et al. (2008) J. Schultz et al. (2002) O. Tsukamoto et al. (1987) F. Scurti et al. (2016) M. Marchevsky et al. (2014) F. Sumiyoshi et al. (2009) M. Marchevsky et. al. (2010) M. Marchevsky et. al. (2015) W. Chan et al. (2013)

V. Kashikhin et al. (2012) G. Manfreda et al. (2014) L. Imbasciati et al. (2001) A. Stenvall et al. (2006)

Acknowledgements