M725 ## Quench and Recovery Characteristics of MgB₂ Coil with Various Protection Schemes Young-Gyun Kim¹, Jong Cheol Kim¹, Yoon Hyuck Choi¹, Jimin Kim¹, Yeon Suk Choi², Yojong Choi³, Tae Kuk Ko³, and H. G. Lee^{1,*} - L. Department of Materials Science and Engineering, Korea University, Seoul, Korea - 2. Korea Basic Science Institute, Daejeon, Korea - 3. Electrical and Electronic Engineering, Yonsei University, Seoul, Korea ## Abstract In recent years, magnesium diboride (MgB₂) has been regarded as one of the promising candidates for the development of MRI magnets owing to its critical temperature of 39 K, which allows magnets to be operated without the use of liquid helium (LHe), unlike their low-temperature superconductor counterparts. Prior to the development of the LHe-free MgB₂ MRI magnet, it is essential to investigate the appropriate protection scheme for the magnets. Therefore, this study examined passive and active protections for a proto-type MgB₂ coil using the MgB₂ wires manufactured by Kiswire Advanced Technology Co. Ltd. The quench and recovery characteristics of the MgB₂ coil with various protection schemes were evaluated in terms of the maximum hotspot temperature, maximum induced voltage, and recovery time.