Polar transformed subdomain modeling for primary-segmented permanent magnet linear synchronous machine

 applied in tracked inspection robotsThe paper presents an developed analytical subdomain model for design and analysis the primary-segmented permanent magnet linear synchronous machine (PS PMLSM) accounting for both the primary and secondary end effect. Firstly, the PS-PMLSM is deformed into a ring-segment PMLSM (RS-PMLSM), the analytical model is calculated in Polar coordinates instead of Cartesian coordinates. Then, the subdomain method is adopted to analysis the RS-PMLSM model by solving the Laplace's equation and the Poisson equation in each region, and the slot effect is considered by conformal transformaion method. The flux densiy and back-

$r=R s: B r 3=\operatorname{Br} 5\left(\theta_{s} \varepsilon\left(-\theta_{3} / 2, \theta_{3} / 2\right)\right)$ $r=R s: H_{\theta 3}=H_{\theta 5}\left(\theta_{s} \varepsilon\left(-\theta_{3} / 2, \theta_{3} / 2\right)\right)$ $r=R s: 0$ (otherwise)
$r=R s: B r_{4}=B r_{5}\left(\theta_{s} \varepsilon\left(\pi-\theta_{4} / 2, \pi+\theta_{4} / 2\right)\right)$
$r=R s: H_{\theta 4}=H_{\theta 5}\left(\theta_{s} \varepsilon\left(\pi-\theta_{4} / 2, \pi+\theta_{4} / 2\right)\right)$ $r=$ Rs:0(otherwise)

The exact analytical solutions in various regions are determined by applying the boundary and interface conditions. the coefficient

The exact analyical equation is as follows: Interface between Air-gap(
$A_{1}\left(1+G 1^{2}\right)-A_{2} G_{2}-B_{2}$
$=-u_{0} / n^{2}-1\left[\left(n R_{r} G_{1}+R_{p}\right) M_{\theta c n}-\left(R_{m} G_{1}+n R_{p}\right) M_{r s s}\right]$ $C_{1}\left(1+G 1^{2}\right)-C_{2} G_{2}-D_{2}$
$C_{1}\left(1+G 1^{2}\right)-C_{2} G_{2}-D_{2}$
$=-u_{0} / n^{2}-1\left[\left(n R_{m} G_{1}+R_{p}\right) M_{\theta s m}-\left(R_{m} G_{1}+n R_{p}\right) M_{v c n}\right]$ $A_{1}\left(1-G_{1}^{2}\right) / u_{r}-A_{2} G_{2}+B_{2}$
$=-u_{0} / u_{r}\left(n^{2}-1\right)\left[n\left(R_{m}-R_{r} G_{1}\right) M_{\theta c n}-\left(R_{m}-R_{r} G_{1}\right) M_{r s s}\right]$
$C_{1}\left(1-G_{t}^{2}\right) / u_{u}-C_{2} G_{2}+D_{z}$ $C_{1}\left(1-G_{1}^{2}\right) / u_{r}-C_{2} G_{2}+D_{2}$
$\left(=-u_{0} / u_{r}\left(n^{2}-1\right)\left[n\left(R_{m}-R_{r} G_{1}\right) M_{\theta_{s n}}-\left(R_{m}-R_{r} G_{1}\right) M_{r c n}\right]\right.$ Interface between Air-gap(region2) and segment (region3): $-A_{2}\left(n / R_{g}\right)+B_{2}\left(n / R_{g}\right)\left(R_{p} / R_{g}\right)$
$=A_{3} f_{k}\left(R_{g}\right) \varsigma+B_{3} g_{k}\left(R_{g}\right) \eta$
$-C_{2}\left(n / R_{g}\right)+D_{2}\left(n / R_{g}\right)\left(R_{p} / R_{g}\right)^{n}$
$=A_{3} f_{k}\left(R_{g}\right) \varsigma+B_{3} g_{k}\left(R_{g}\right) \eta$
$A_{3}\left(R_{g} / R_{s}\right)^{k \pi / \theta_{2}}+B_{3}\left(R_{g} / R_{g}\right)^{-k \pi / \theta_{2}}=F_{2 k}$
$F_{2 k}=\sum_{n=1}^{\infty}\left(A_{2}\left(R_{s} / R_{s}\right)^{n}+B_{2}\left(R_{s} / R_{r}\right)^{-n}\right) 2 \pi / \theta_{2} S$
$+\sum_{n=1}^{\infty}\left(C_{2}\left(R_{s} / R_{s}\right)^{n}+D_{2}\left(R_{s} / R_{r}\right)^{-n}\right) 2 \pi / \theta_{2} \eta$
$F_{2 k}{ }^{4}=\sum_{n=1}^{\infty}\left(A_{2}\left(R_{g} / R_{g}\right)^{n}+B_{2}\left(R_{s} / R_{r}\right)^{-n}\right) 2 \pi / \theta_{2} s^{4}$
$+\sum_{n=1}^{\infty}\left(C_{2}\left(R_{g} / R_{g}\right)^{n}+D_{2}\left(R_{g} / R_{r}\right)^{-n}\right) 2 \pi / \theta_{2} \eta^{4}$
nterface between Air-gap(region2) and end region (region4): $-A_{2}\left(n / R_{g}\right)+B_{2}\left(n / R_{g}\right)\left(R_{p} / R_{g}\right)$ $=A_{4} f_{k}\left(R_{g}\right) S^{4}+B_{4} g_{k}\left(R_{g}\right) \eta^{4}$ $-C_{2}\left(n / R_{g}\right)+D_{2}\left(n / R_{g}\right)\left(R_{p} / R_{s}\right.$ $=A_{4} f_{k}\left(R_{g}\right) \varsigma^{4}+B_{4} g_{k}\left(R_{g}\right) \eta^{4}$ $A_{4}\left(R_{g} / R_{s}\right)^{k \pi / \theta_{2}}+B_{4}\left(R_{g} / R_{g}\right)^{-k \pi / \theta_{2}}=F_{2 k}$ Interface between end region (region3) and Air (region5): $\left.A_{3} f_{k}\left(R_{s}\right)+B_{3} g_{k}\left(R_{s}\right)\right] \varsigma=B_{5} n / R_{s}$ $\left.A_{3} f_{k}\left(R_{s}\right)+B_{3} g_{k}\left(R_{s}\right)\right] \eta=D_{5} n / R_{s}$ $A_{5}+B_{5}\left(R_{s} / R_{g}\right)^{k \pi / \theta_{3}}=F_{5 k}$ Interface between end region (region4) and Air (region5): $\left.A_{5} f_{k}\left(R_{s}\right)+B_{5} g_{k}\left(R_{s}\right)\right] \varsigma^{4}=B_{4} n / R_{s}$ $\left.A_{5} f_{k}\left(R_{s}\right)+B_{5} g_{k}\left(R_{s}\right)\right] \eta^{4}=D_{4} n / R_{s}$ $A_{5}+B_{5}\left(R_{s} / R_{g}\right)^{k \pi / \theta_{s}}=F_{5 k}{ }^{4}$
$F_{5 k}=\sum_{n=1}^{\infty}\left(B_{3}\left(R_{s} / R_{s}\right)^{-n}\right) 2 \pi / \theta_{3} \varsigma$
$+\sum_{n=1}^{\infty}\left(D_{3}\left(R_{s} / R_{g}\right)^{-n}\right) 2 \pi / \theta_{3} n$
$F_{5 k}{ }^{4}=\sum_{n=1}^{\infty}\left(B_{3}\left(R_{s} / R_{s}\right)^{-n}\right) 2 \pi / \theta_{3} \varsigma^{4}$
$+\sum_{n=1}^{\infty}\left(D_{3}\left(R_{s} / R_{g}\right)^{-n}\right) 2 \pi / \theta_{3} \eta^{4}$

Distribution of Flux denstiy

Distribution of Back-EMF

The distribution of magnetic flux density and Back-EMF are ploted. Through the comparison, the analytical results are in good consistent with the simulation results, the flux density of air-gap in slot region is about 0.55 T , in three end regions are about 0.25 T, the maximum value of the EMF is about 14 V .

