High Temperature Superconductors for Fusion Nuclear Science Spherical Tokamak

Yuhu Zhai', Thomas Brown?, Jonathan Menard* e AT
1. Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08540 USA

Conclusion and Development Strategy

Background

Princeton Plasma Physics Laboratory is currently leading the designh studies of Fusion Nuclear Science Facility and pilot plants based on the most promising % Integrated magnet design with burning plasma beyond ITER for economic fusion energy is needed to close the gap between
magnetic confinement configurations including the low aspect ratio Spherical Tokamak. A new magnet design is needed to close the gap between rapid advances in advanced in applied HTS and next step fusion magnet design.
HTS and the maximal fusion energy extraction from ITER-like burning plasma. Significant performance improvement in HTS cables utilizing REBCO tapes as well as the high R

» Establish strong national & international collaborations to identify key elements of HTS strategy with targeted magnet R&D effort.

current density Bi-2212 round wires provides targeted magnet R&D opportunities to support the design consideration of low aspect ratio spherical tokamak pilot plants.

«* Develop scalable models with multi-physics analysis tools to address challenging design issues such as limitation of Pancake coils.

Objectives

» Explore novel very high current density HTS cable configurations and advanced coil winding technologies.
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s* Develop new HTS magnet technology for compact reactor magnets with integrated approach to close gaps between advances in HTS and fusion magnet design. « Optimize coil shape and structural design for better stress management in HTS coils of increased .

\/

** |Investigate coils of simplified fabrication (without VPI) to improve winding pack current density while subsequent lower cost and enhance radiation resistance.
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Critical Issues and Fusion Magnet Challenges HTS quench protection & enhance radiation tolerance with engineered insulation
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of winding pack while improving overall winding pack current density.
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