DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

and I. TISEANU⁵ ¹CEA Cadarache IRFM, FR ²IUSTI Aix Marseille University, FR ³University of Bologna, IT

⁵INFLPR Bucharest, RO

Work supported in part by Conseil Régional Provence-Alpes-Côte d'Azur and by ASSYSTEM

⁴University of Twente, NL

Development of a new generic

analytical modeling of AC coupling

losses in cable-in-conduit conductors

A. LOUZGUITI¹², L. ZANI¹, D. CIAZYNSKI¹, B. TURCK¹, JL. DUCHATEAU¹, A. TORRE¹, F. TOPIN², M. BIANCHI³, AC. RICCHIUTO³, T. BAGNI⁴, V.A. ANVAR⁴, A. NIJHUIS⁴

MT25 August 27 - September 1, 2017 Amsterdam

Cable In Conduit Conductor (CICC) architecture

22 mm

CICC ITER (CS):

Strands (Sc composites and Cu) Strands twisted in several cabling stages (transposition)

- 3 strands twisted together = triplet
- > CICC subject to a magnetic field gradient: need for transposition
- Twisting reduces coupling losses
- CICC cooled by supercritical Helium flow at T ~ 4 K

CICC JT-60SA (TF):

JT-60SA TF strand

External

resistive

shell (Cu)

Coupling losses

<u>Inductive phenomenon</u>: time variation of magnetic field induces current loops

→ currents flow through Sc (= no losses) and loop back through Cu (= losses)

Multi-scale phenomenon: coupling currents inside and between strands

Negative impact on the CICC stability:

- Coupling currents add to the transport current → Sc closer to its critical current
- Coupling losses heat the CICC → Sc closer to its critical temperature

Analytical modeling of coupling losses: existing approaches

At strand scale:

$$\overrightarrow{B_a} (\overrightarrow{B_a} \neq 0)$$

Filamentary zone

 \triangleright Equation: $B_i + \tau \dot{B}_i = B_a$

> Coupling power: $P = \frac{2\tau \dot{B_i}^2}{\mu_0}$

ightharpoonup Time constant : $au = \frac{\mu_0}{2} \left(\frac{l_p}{2\pi}\right)^2 \frac{1}{\rho_t}$

 l_n : filament twist pitch ho_t : transverse resistivity

 B_a : magnetic field created by external source

 B_i : internal magnetic field

At CICC scale:

- > Modeling at strand scale extended to the CICC scale = single time constant approach \rightarrow insufficient modeling for transient regimes, not predictive
- > MPAS model [1]: assumes that each cabling stage taken separately can be represented with only one time constant τ_i and one partial shielding coefficient nk_i
 - → For a CICC with N cabling stages, shielding effects are combined and losses are

$$P = \sum_{i=1}^{N} \frac{n\kappa_{i}\theta_{j}\dot{B}_{int\,j}^{2}}{\mu_{0}}$$

 $P = \sum_{i=1}^{N} \frac{n\kappa_{j}\theta_{j}\dot{B}_{int\,j}}{\mu_{0}} \qquad n\kappa_{j} \text{ and } \theta_{j} \text{ depend on } nk_{j} \text{ and } \tau_{j} \text{ and are determined from coupling losses measurements } \rightarrow \text{ not predictive}$

Analytical modeling of coupling losses: our approach

Objective: Build an analytical, predictive and generic model of coupling losses in CICCs

- > To enhance the physical understanding of coupling losses (driving parameters ?)
- > To create tools which can rapidly be integrated into multiphysics platforms
- > To provide fair results with very low CPU consumption

Model developed scale by scale:

 \succ In a previous study [2], we have demonstrated that a cabling stage alone could indeed be represented with one τ and one nk (assumption made by MPAS)

$$\tau_{N} = \frac{\mu_{0}}{R\rho_{t}} \frac{l_{c}}{\pi} \left(\frac{l_{p}}{2\pi}\right)^{2} sin^{2} \left(\frac{\pi}{N}\right) \gamma_{N} \qquad nk = \frac{N}{\gamma_{N}} \frac{1}{\left[1 + sin\left(\frac{\pi}{N}\right)\right]^{2}}$$

$$\gamma_N = ln\left(\frac{2R_c}{R_f}\right) - 2\sum_{j=1}^{floor\left(\frac{N-1}{2}\right)} cos\left(j\frac{2\pi}{N}\right) ln\left(sin\left(j\frac{\pi}{N}\right)\right)$$
 N: number of elements in stage

 \triangleright We have now up scaled this study to a two cabling stage conductor (growing complexity due to coupling between two stages) = N_2 -uplet of N_1 -uplets model

Analytical modeling of coupling losses: two stage model

Flement : can be a strand or a simplified sub-petal

scale of the element not fixed

- Our strategy aims at describing the coupling between two consecutive cabling stages
- \triangleright Longitudinal current $I_{j_1j_2}$ carried by element j_1 of substage j_2 split as:

$$I_{j_1j_2} = I_{j_1j_2}^{(1)} + I_{j_2}^{(2)}/N_1$$

shielding of substage j_2 superstage

Cross-section of a triplet of triplets of elements

Analytical modeling of coupling losses: two stage model

N_2 -uplet of N_1 -uplets model :

> Equations :

Faraday's law of induction + Kirchhoff's current law lead to

$$\begin{split} \frac{d^2 I_{j_1 j_2}}{dz^2} - \sigma_{l_1} \left(2 \dot{A}_{z_{r_{j_1 j_2}}} - \dot{A}_{z_{r_{j_1 - 1 j_2}}} - \dot{A}_{z_{r_{j_1 + 1 j_2}}} \right) \\ - \frac{\sigma_{l_2}}{N_1^2} \sum_{j_1 = 1}^{N_1} \left(2 \dot{A}_{z_{r_{j_1 j_2}}} - \dot{A}_{z_{r_{j_1 j_2 - 1}}} - \dot{A}_{z_{r_{j_1 j_2 + 1}}} \right) = \\ 4 R_{c_1} \sigma_{l_1} \dot{B}_a e^{i \left[\alpha_1 z + \frac{2\pi (j_1 - 1)}{N_1} \right]} - 4 R_{c_2} \frac{\sigma_{l_2}}{N_1} \dot{B}_a e^{i \left[\alpha_2 z + \frac{2\pi (j_2 - 1)}{N_1} \right]} \end{split}$$

with
$$\alpha_1=2\pi/l_{p_1}$$
 and $\alpha_2=2\pi/l_{p_2}$

 $A_{z_{r_{i_1i_2}}}$: magnetic vector potential due to induced currents at center of element j_1 of substage j_2

- \rightarrow To express equation on $I_{j_1j_2}$ we need $A_{z_{r_{j_1j_2}}}$ as function of $I_{j_1j_2}$
- \rightarrow Main issue : to use Biot-Savart law, we need $I_{j_1,j_2}(z)$
- → Solution : we suppose

$$I_{j_1 j_2}(z, t) = \sum_{k=1}^{n} I_{0 j_1 j_2}^{(\beta_k)}(t) \cos \left(\beta_k z + \varphi_{j_1 j_2}^{(\beta_k)}\right)$$

 β_k : spatial frequency

Analytical modeling of coupling losses: two stage model

N_2 -uplet of N_1 -uplets model :

Search for excited spatial modes :

- When $\dot{I}_{j_1j_2}=0$ (steady-state) : only two spatial frequencies (α_1 and α_2)
- Numerical study for a step function shows more spatial frequencies
- → Complex analytical calculation led us to the basis of the spatial frequencies (infinite, linear combinations of α_1 and α_2)
- → But it is possible to keep only four frequencies (other modes negligible according to study in step function)

> Equation reduced to:

$$\begin{bmatrix} I_0^{(\alpha_0)} \\ I_0^{(\alpha_1)} \\ I_0^{(\alpha_2)} \\ I_0^{(\alpha_3)} \end{bmatrix} + \begin{bmatrix} \tau_{1\,1} & \tau_{1\,2} & 0 & 0 \\ \tau_{2\,1} & \tau_{2\,2} & \tau_{2\,3} & 0 \\ 0 & \tau_{3\,2} & \tau_{3\,3} & \tau_{3\,4} \\ 0 & 0 & \tau_{4\,3} & \tau_{4\,4} \end{bmatrix} \begin{bmatrix} \dot{I}_0^{(\alpha_0)} \\ \dot{I}_0^{(\alpha_1)} \\ \dot{I}_0^{(\alpha_2)} \\ \dot{I}_0^{(\alpha_3)} \end{bmatrix} = \begin{bmatrix} 0 \\ y_{1\,ext} \\ y_{2\,ext} \\ 0 \end{bmatrix} \dot{B}_a$$

Time coefficients derived analytically but depend on integrals that have to be evaluated numerically

of group j_2

Analytical modeling of coupling losses: two stage model

N_2 -uplet of N_1 -uplets model :

Expression of losses for any time regime:

$$P_l = N_1 N_2 \sum_{k=0}^{3} \frac{\left[\alpha_k I_0^{(\alpha_k)}\right]^2}{\gamma_k}$$

with
$$\gamma_0=32\sigma_{l_1}\sin^2\left(\frac{\pi}{N_1}\right)\cos^2\left(\frac{\pi}{N_1}\right)$$
, $\gamma_1=8\sigma_{l_1}\sin^2\left(\frac{\pi}{N_1}\right)$, $\gamma_2=2\sigma_{l_2}\sin^2\left(\frac{\pi}{N_2}\right)/N_1$ and $\gamma_3=\gamma_1$

- \rightarrow We have found four time constants θ_i and partial shielding coefficients $n\kappa_i$ for a two cabling stage conductor
- \rightarrow The time constants θ_i are the eigenvalues of the previous matrix
- → Next step: search for an iterative process to reach a higher number of cabling stages

Comparison with reference numerical models

Comparison with THELMA (University of Bologna, IT):

- On a simplified geometry of ITER CS conductor (last two cabling stages only)
 = 6 bundles of 4 elements each (with diameter of 6.49mm)
- > Subject to +/-0.2T triangular cycles of transverse magnetic field (f=0.1 Hz)
- From geometry (perfect helicoids) and conductance network of THELMA, we extract effective geometrical and electrical parameters

Effective parameters	l_{p_k} (mm)	R_{c_k} (mm)	σ_{l_k} (10 ⁷ S/m)
Substage $(k = 1)$	112.5	3.86	2.36
Superstage $(k = 2)$	450.0	11.49	6.50

Results:

Coupling power per unit length of conductor (steady-state):

667 $mW.m^{-1}$ (THELMA) vs 863 $mW.m^{-1}$

- → Agreement within 30%
- > Induced currents:
 - → Agreement within 15%

Comparison with reference numerical models

Comparison with JackPot (University of Twente, NL):

- On a simplified geometry of JT60SA TF conductor (last two cabling stages only) = 6 bundles of 3 elements each (with diameter of 4.21mm)
- > Subject to +/-1T sinusoidal cycles of transverse magnetic field (f=0.05 Hz)
- From geometry (compacted helicoids) and conductance network of JackPot, we extract effective geometrical and electrical parameters

Effective parameters	l_{p_k} (mm)	R_{c_k} (mm)	σ_{l_k} (10 ⁷ S/m)
Substage $(k = 1)$	187.0	2.96	1.38
Superstage $(k = 2)$	290.2	6.56	5.92

Results:

Coupling losses per unit length of conductor per cycle (slowly timevarying regime):

13.35 J/m/cycle (JackPot) vs 18.94 J/m/cycle

→ Agreement within 40%

Cross-section (a) and 3D geometry (b) produced by JackPot

Comparison with reference numerical models

Discussions:

- ➤ Global agreement between our fully analytical model on two different geometries with two fully numerical models are within ~30/40 % on losses and even better for coupling currents (within 15%)!
- For both comparisons, our model predicts higher losses :
 - Several numerical effects investigated (changes of spatial discretization, length of conductor and initial phase shifts between elements) but none responsible for the 30-40% discrepancy
 - Our slight overestimation is very likely to be due to an averaging effect of our modeling at the superstage scale and is not likely to be much higher than 30-40%
- > Comparisons with numerical models will go on

Reconstruction of strand trajectories in a CICC:

- X-ray tomography of JT-60SA TFCS conductor samples made by INFLPR (Bucharest, RO)
- > 2D transverse images of CICC obtained every millimeter along its axis

Development of algorithms for automatic strand detection in every image and 3D

reconstruction of strand trajectories

3D strand	tra	<u>jectories</u>			
reconstructed					

Cabling stage	Cabling radii (mm)	န် Twist pitches (mm)	Twist pitches (mm) specifications
1	0.49	45.4	45
2	0.82	66.7	70
1 2 3 4	1.62	120.2	120
4	2.31	185.2	190
5	7.75	285.7	290

Effective geometrical parameters

Next steps:

2D transverse image obtained

from X-ray tomography

- → Use inter-strand resistivity measurements to deduce the effective electrical parameters of JT-60SA TFCS conductors
- → Compare losses computed with our analytical modeling using effective parameters with losses measured at SULTAN

Conclusions et prospects

Conclusions:

- > Previous analytical model of coupling losses on one cabling stage conductor has been up scaled to a two cabling stage one
- > Fair agreement of our approach with two different reference numerical models on two different geometries demonstrates its trustworthiness (though slightly conservative)
- ➤ Methods of calculation of **effective parameters** developed during comparisons with THELMA and JackPot used on **real strand trajectories** to extract **representative effective parameters of JT-60SA TFCS conductor** (in very good agreement with its specifications)

Prospects:

- > Set new comparisons with numerical models for different magnetic regimes
- ➤ Deduce **effective conductances** for JT-60SA TFCS conductor from resistivy measurements **to compare** losses computed with **our model with** losses **measured** at Sultan
- > Search for an iterative process allowing to model a higher number of cabling stages

Thank you for your attention

Do you have any questions?