Thu-Af-Po4.03-12

Shanghai Institute of Applied Physics, Chinese Academy of Sciences

1. Introduction					3. The SCU	
A superconducting planar undulator is under developm The design specifications are as follows. Electron Energy Current Energy Range (keV, n=1) Magnetic Gap (mm) Peak Field (T)		nent at the Shanghai Synchrotron R 3.5 GeV 200 mA 3.9-7 9.5 0.67		Radiation Facility (SSRF).	<text></text>	Cooling and excit The upper and k limitation of the $\frac{500}{450}$ $\frac{100}{450}$ $\frac{100}{450}$
Period length (mm) Number of Periods <u>RMS Phase Angle Error (°)</u> Integrals and Multipoles First Integral (Gcm) Second Integral (Gcm ²) Integrated Quadrupole (G) Integrated Sextupole (G/cm) Integrated Octupole (G/cm ²)		16 50 <4°				$300 \\ 250 \\ 200 \\ 150 \\ 100 \\ 50 \\ 0 \\ 1 \\ 2 \\ Trainin$
	2. Magneti	c field desig	zn			
The main parameters of one SC coil pack Width of coil section (mm) 4.98		Specifications of th Cu/SC ratio		he NbTi wires 0.93	The cryostat was tested first with a dummy load due to	fabrication delay of
Height of coil section (mm) Number of layers Number of turns per layer Total number of turns Nominal current (A) Current density (A/mm ²)	5.8 11 7/8 83 400 1149	R.R.R. Filament diameter (µm) Number of filaments Twist pitch (mm) Wire diameter (mm)		>80 95 55 30 0.55 (bare) 0.60 (insulated)	Specification of the cryo Length along beam line (m) Temperature on beam chamber (K) Temperature on thermal shields (K) Heat load on thermal shields (W) Temperature on magnet (K)	stat 1.8 10~20 40~60 100 4.5
Calculated magnetic field Peak field at gap center (T) 0.67		_ Chucai curren	ι αι 4.ΖΝ	285A@6T 217A@7T	Heat load on magnet (W) Cooling capacity @4.5 K (W)	1.8 3

Width of coil section (mm)				
Height of coil section (mm)				
Number of layers				
Number of turns per layer				
Total number of turns				
Nominal current (A)				
Current density (A/mm ²)				

^{z (cm)} Calculated magnetic fields

This work is funded by the Natural Science Foundation of China from the Ministry of Science and Technology of China (No. 11275254).

Research Progress of a superconducting Undulator Prototype at the SSRF Jieping Xu, <u>Yi Ding</u>, Shuhua Wang, Sen Sun, Jian Cui, Ming Li, Qiaogen Zhou, Li Wang, Lixin Yin

Cold test results

>Cooldown time: ~58 hrs for ~160 kg 4 K cold mass only by cryocoolers > He liquefaction: ~89 hrs to accumulating 30 liters LHe in helium vessel

U magnet

excitation test of the SCU magnet was performed. and bottom part of the magnet was tested separately due to the f the test cryostat.

4. Test of the cryostat

Number

lay of the SCU magnet.

4 x1.5 W/4.2 K Cryocoolers

Cryocooler Type

中国科学院上海龙田物理研究所

5. Summary and outlook

➢A 50-period SCU prototype is being developed at the SSRF ➢ Fabrication of The SCU magnet and the cryostat was completed. ➤The upper and bottom parts of the SCU magnet were tested separately. The rated current of 400 A is reached.

>The cool-down of the cryostat was successfully performed with a dummy load simulating the magnet without beam vacuum chamber.

>Installation of the SCU magnet into the cryostat is planned in Oct. 2017.

The stand-alone test of the SCU is planned in Feb. 2018. ➢Installation of the SCU into the storage ring is planned in July 2018.

KDE415 CSIC PRIDE (NANJING) CRYOGENIC TECHNOLOGY CO., LTD

Cooling capacity (W) 35 @50 K 1.5 @4.2 K