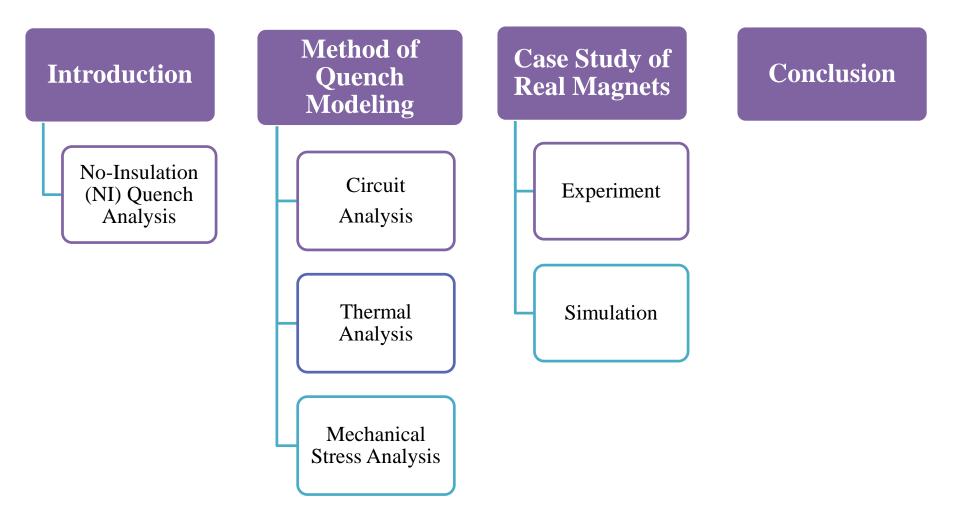
Quench Analysis of Stacks of No-Insulation REBCO Coils Demonstrating Electromagnetic Quench Propagation and Self-Protecting Behavior

<u>Kabindra Bhattarai</u>^a, Kwanglok Kim^a, Kwangmin Kim^a, So Noguchi^b, Thomas Painter^a, SangGap Lee^c and Seungyong Hahn^{a,d}.

a. Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA


- b. Hokkaido University, Hokkaido, Japan
- c. Korea Basic Science institute, Daejeon, Korea
 - d. Seoul National University, Seoul, Korea

International Conference on Magnet Technology, Amsterdam, Netherlands.

August 29, 2017

K. Bhattarai <krb15d@my.fsu.edu>

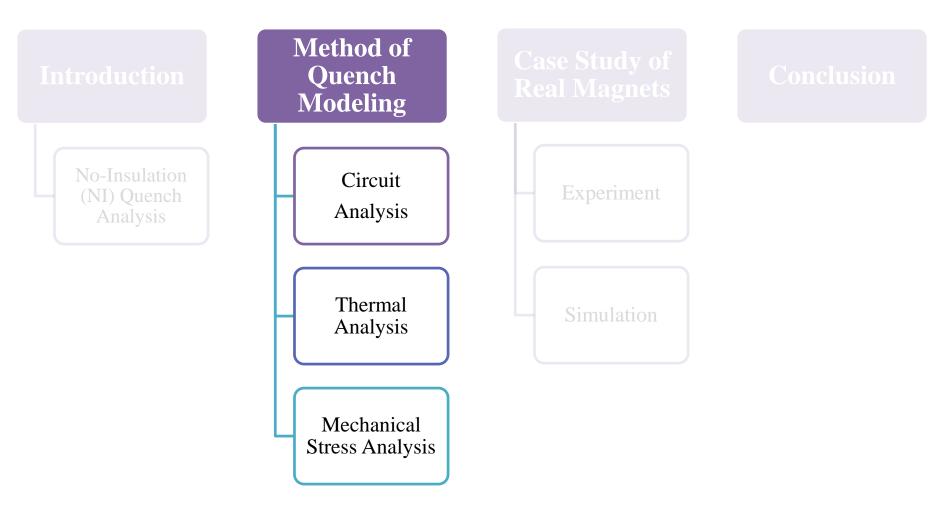
Points of Discussion

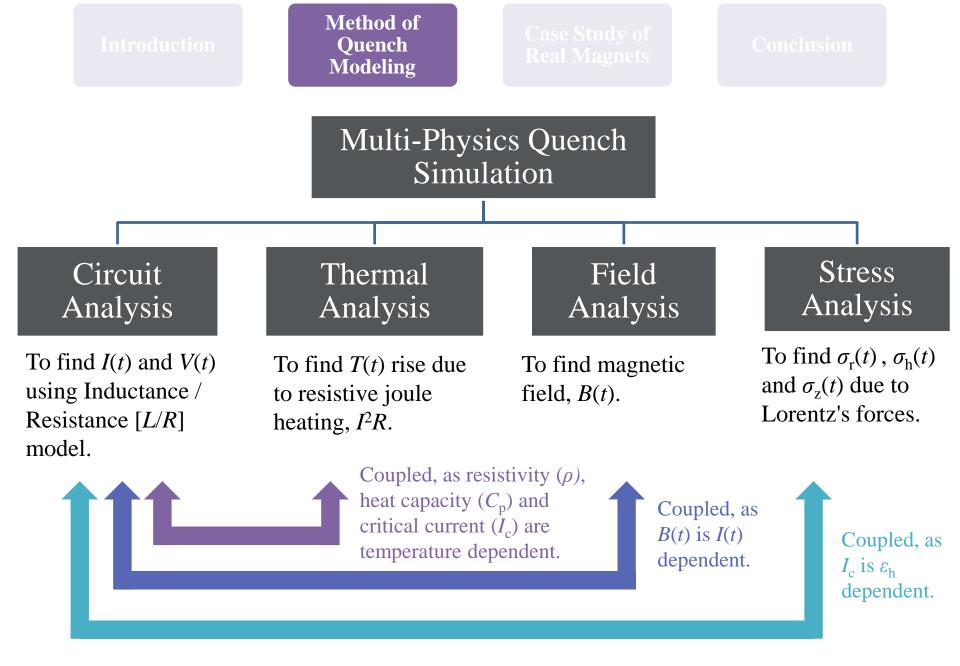
K. Bhattarai <krb15d@my.fsu.edu>

Conclusion

No-Insulation Quench Analysis

NI Quench Modeling


Challenges:


- Anisotropic current path.
- Temperature rise and LHe consumption.
- Temperature dependent parameters.
- Unbalanced forces, stresses & strains.

Significance:

- Understanding of post quench situation ($I(t), T(t), \sigma(t), \varepsilon(t)^*$) is important.
- Need to make sure T and $\underline{\varepsilon}$ are below certain limits.
 - * I(t): Operation current T(t): Temperature $\sigma(t)$: Stress $\varepsilon(t)$: Strain

Points of Discussion

K. Bhattarai <krb15d@my.fsu.edu>

Introduction

Method of Quench Modeling

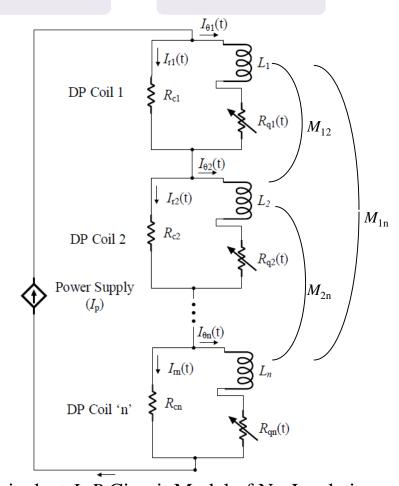
Case Study of Real Magnets

Conclusion

□ Circuit Analysis

• Lumped Circuit Model:

Each coil is modeled as:


- Inductor, *L-M*;
- Characteristic contact resistance, R_c ;
- Quench resistance, $R_q(t)$;

$$R_q(t) = \frac{V_c}{I(t)} \left(\frac{I_{superconductor}}{I_c(B(t), \theta(t))} \right)^n$$

 Field, Angle & Temperature Dependency of Critical Current, I_c

Modeled using expressions:

- David K. Hilton *et al.*, "Practical Fit Functions ...," *Supercond. Sci. Technol.*, vol. 28, no. 7, June 2015.
- Carmine Senatore *et al.*, "Field and Temperature...," *Supercond. Sci. Technol.*, vol. 29, no. 1, Dec 2015.

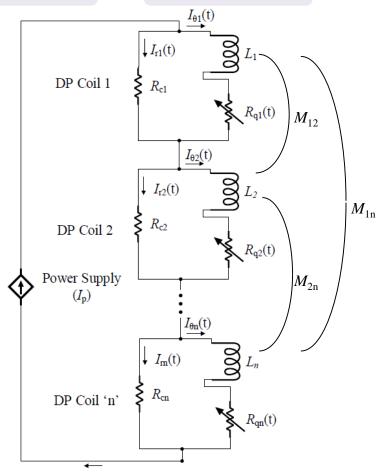
Equivalent L-R Circuit Model of No-Insulation Magnet with 'n' Number of Coils.

REF: K.R. Bhattarai *et al.*, "Quench Analysis of a Multiwidth...," *IEEE Trans. Appl. Supercond.*, vol. 27, no. 4, p. 4603505, June 2017.

K. Bhattarai <krb15d@my.fsu.edu> Quench Analysis of NI REBCO Magnets (Tue-Mo-Or12)

2017 MT Conference, Amsterdam, Netherlands (August 29, 2017)

Case Study of Real Magnets

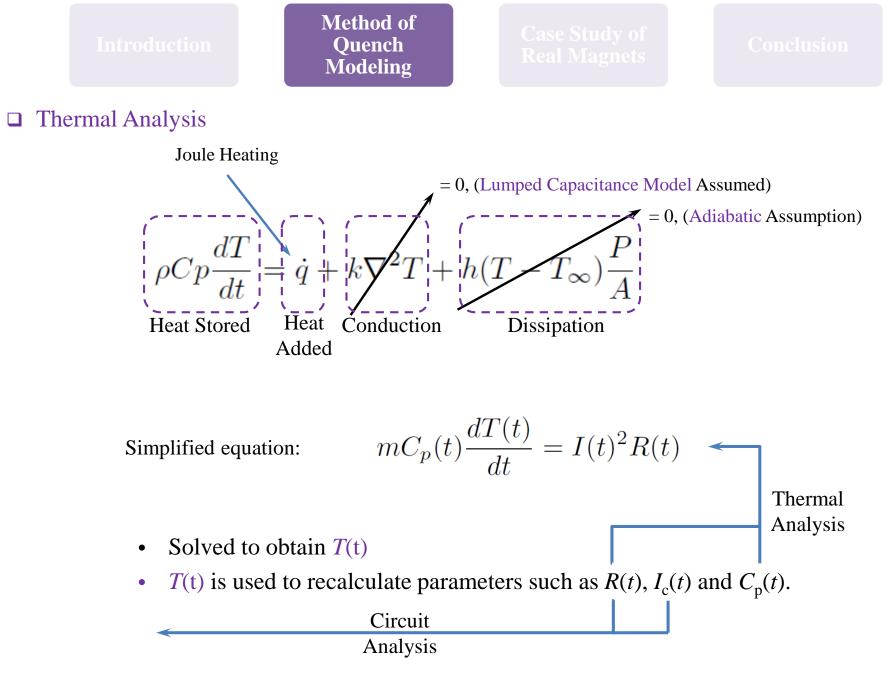

Conclusion

Circuit Analysis

• Governing ODEs from Kirchhoff's Law solved to obtain I(t) and V(t).

$$\begin{split} L_{11} \frac{dI_{op1}(t)}{dt} + M_{12} \frac{dI_{op2}(t)}{dt} + \dots + M_{1n} \frac{dI_{opn}(t)}{dt} + I_{op1}(t)Rq_1(t) \\ &= [I_p(t) - I_{op1}(t)]Rc_1 \\ &\vdots \\ M_{n1} \frac{dI_{op1}(t)}{dt} + M_{n2} \frac{dI_{op2}(t)}{dt} + \dots + L_{nn} \frac{dI_{opn}(t)}{dt} + I_{opn}(t)Rq_n(t) \\ &= [I_p(t) - I_{opn}(t)]Rc_n \end{split}$$

- Advantage of Lumped Model: Fast and seems reliable.
- Disadvantage of Lumped Model: Not possible to obtain coil spatial information.



Equivalent L-R Circuit Model of No-Insulation Magnet with 'n' Number of Coils.

REF: K.R. Bhattarai *et al.*, "Quench Analysis of a Multiwidth...," *IEEE Trans. Appl. Supercond.*, vol. 27, no. 4, p. 4603505, June 2017.

K. Bhattarai <krb15d@my.fsu.edu> Quench Analysis of NI REBCO Magnets (Tue-Mo-Or12)

2017 MT Conference, Amsterdam, Netherlands (August 29, 2017)

K. Bhattarai <krb15d@my.fsu.edu>

Mechanical Stress Analysis

• Radial stress $[\sigma_r(t)]$ and hoop stress $[\sigma_{\theta}(t)]$.

Force balance governing equation at magnet mid-plane: $r\frac{\partial \sigma_r}{\partial r} + \sigma_r - \sigma_{\theta} + rJ_{\theta}B_z(r) = 0$

- REF: Bobrov, E.S. and Williams, J.E.C (1980) in *Mechanics of Superconducting Structures*, vol. 41, Proceedings of the Winter Annual Meeting Chicago, IL., November 16-21, 1980 (ed F.C. Moon), ASME, New York, pp.13-41.
- Stress in self supporting condition; $\sigma_{\theta} = B_z(r) \cdot J \cdot r$
- Solved to obtain $\sigma_{\rm r}(t)$, $\sigma_{\rm \theta}(t)$.
- Using generalized Hook's law, strain can be calculated.

$$\varepsilon_r = \frac{\sigma_r}{E_r} - v_{hr} \frac{\sigma_h}{E_h} - v_{zr} \frac{\sigma_z}{E_z}$$
$$\varepsilon_h = \frac{\sigma_h}{E_h} - v_{rh} \frac{\sigma_r}{E_r} - v_{zh} \frac{\sigma_z}{E_z}$$
$$\varepsilon_z = \frac{\sigma_z}{E_z} - v_{rz} \frac{\sigma_r}{E_r} - v_{hz} \frac{\sigma_h}{E_h}$$

• 95% $I_{\rm c}$ retention when $\varepsilon_{\rm h}$ is ~ 0.5%.

K. Bhattarai <krb15d@my.fsu.edu>

Points of Discussion

K. Bhattarai <krb15d@my.fsu.edu>

Introduction

Method of Quench Modeling

Case Study of Real Magnets

Conclusion

Case Study I: 2 DP NI REBCO insert in 31.1 T background magnet.

• Some parameters that go into the simulation.

Parameters		Values
Tape width	[mm]	4.03
Tape thickness	[mm]	0.045; 0.01
Stabilizer material		Cu RRR50
Winding inner radius, a_1	[mm]	7
Winding outer radius, a_2	[mm]	17
Overall height	[mm]	16.48
Total number of turns		859
Inductance, $L_{\rm HTS}$	[mH]	10.25
Measured characteristic resistance, R_c	$[m\Omega]$	2.4
Young's modulus, E_r ; E_h ; E_z	[GPa]	69; 144; 144
Quench current	[A]	210

K. Bhattarai <krb15d@my.fsu.edu>

□ Case Study I: 2 DP NI REBCO insert in 31.1 T background magnet.

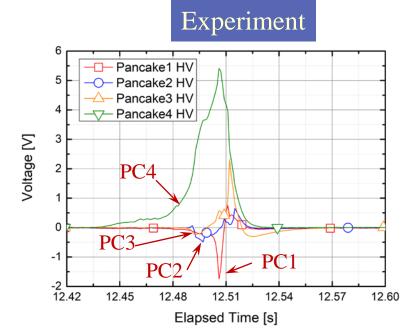
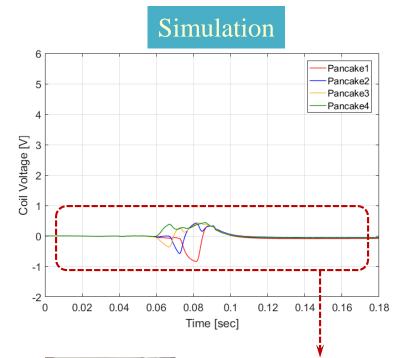
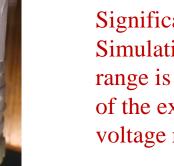
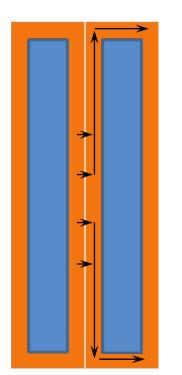
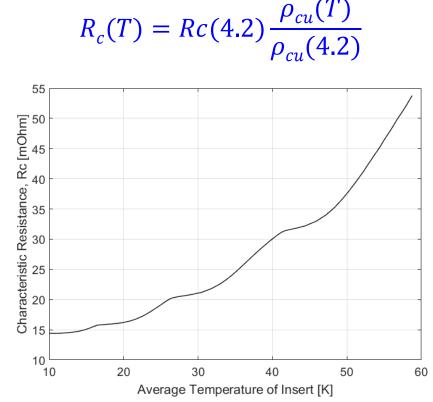




Table 1: Key Magnet Parameters

Parameters	Value
Inner radius [mm]	7
Outer Radius [mm]	17
Height [mm]	16.48
Time Constant [sec]	3.817
Quench Current [A]	210
Stored Energy [J]	240.8

K. Bhattarai <krb15d@my.fsu.edu> Quench Analysis of NI REBCO Magnets (Tue-Mo-Or12) 2017 MT Conference, Amsterdam, Netherlands (August 29, 2017)



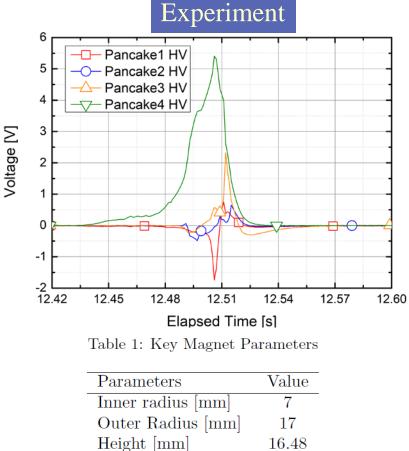

Significant error. Simulation voltage range is only ~15% of the experimental voltage range.

Increase in Characteristic Resistance, R_c due to temperature rise.

• Assumption: R_c maybe increasing proportionally, as the copper resistivity rises with temperature. $P_c(T) = P_c(A, 2) \frac{\rho_{cu}(T)}{\Gamma}$

*R*_c increase due to temperature rise is also proposed by J. Lu et al.
REF: J. Lu *et al.*, "Contact resistance between two REBCO tapes under load and load cycles," *Supercond.* Sci. Techol., vol. 30, p. 045005, 2017.

K. Bhattarai <krb15d@my.fsu.edu>


Case Study of Real Magnets

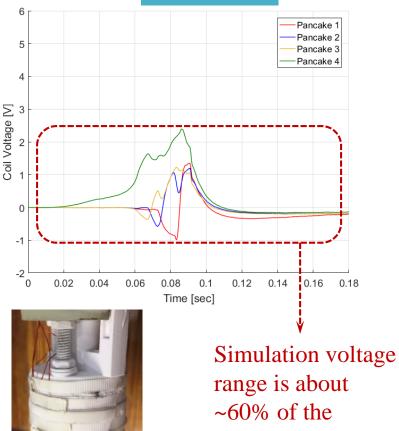
experimental

voltage range

Case Study I: 2 DP T NI REBCO insert in 31.1 T background magnet.

With variable Characteristic Resistance, R_{c}

Time Constant [sec]

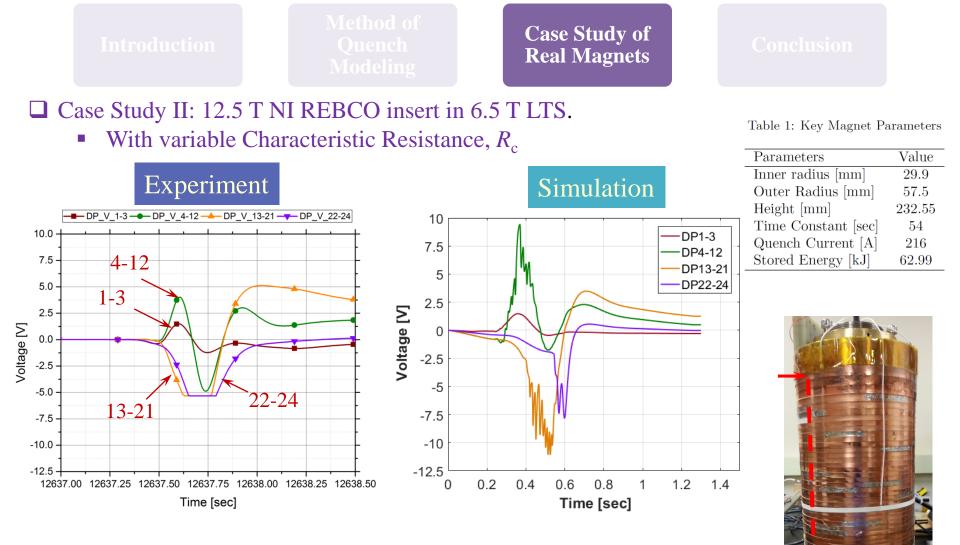

Quench Current [A]

Stored Energy [J]

3.817

210

240.8



Simulation

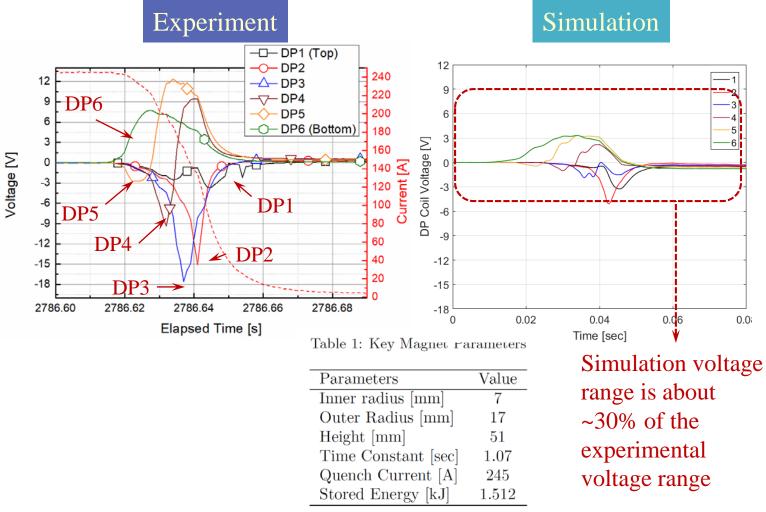
K. Bhattarai <krb15d@my.fsu.edu>

Quench Analysis of NI REBCO Magnets (Tue-Mo-Or12) 2017 MT Conference, Amsterdam, Netherlands (August 29, 2017)

14/21

REF: T. Painter *et al.*, "Design, Construction and Operation of a 13 T 52 mm No-Insulation REBCO Insert for a 20 T All-Superconducting User Magnet," *Oral Presentation @ MT Conference 2017*. <u>Thu-Mo-Or31</u>

K. Bhattarai <krb15d@my.fsu.edu>


Method of Quench Modeling

Case Study of Real Magnets

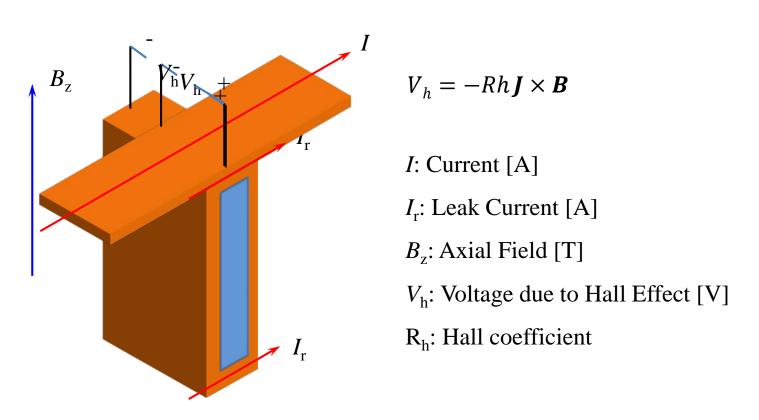
Conclusion

□ Case Study III: 14.36 T NI REBCO insert in 31.1 T background magnet.

• With variable Characteristic Resistance, R_c

K. Bhattarai <krb15d@my.fsu.edu> Quench Analysis of NI REBCO Magnets (Tue-Mo-Or12) 2017 MT Conference, Amsterdam, Netherlands (August 29, 2017)

16/21



Method of Quench Modeling

Case Study of Real Magnets

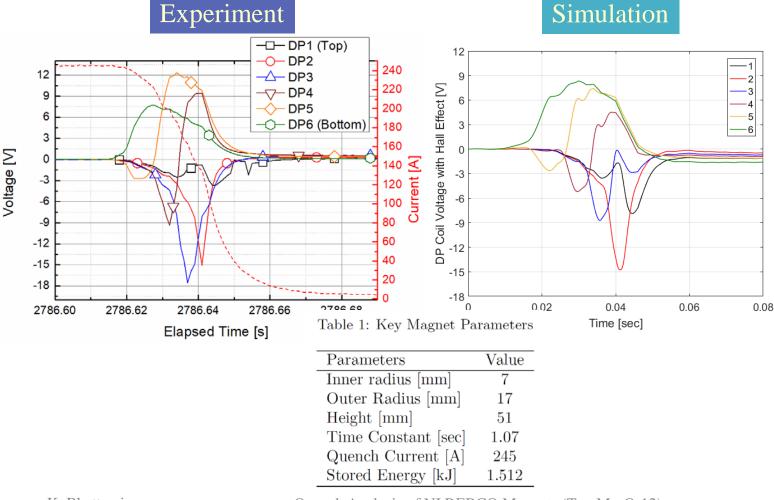
Conclusion

□ Hall effect.

Proposed by So Noguchi et al.

REF: S. Noguchi *et al.*, "Electrical Field Generation by Hall Effect in High Field No-Insulation REBCO Pancake Coils," *Poster Presentation @ MT Conference 2017*. <u>Thu-Af-Po4.11</u>

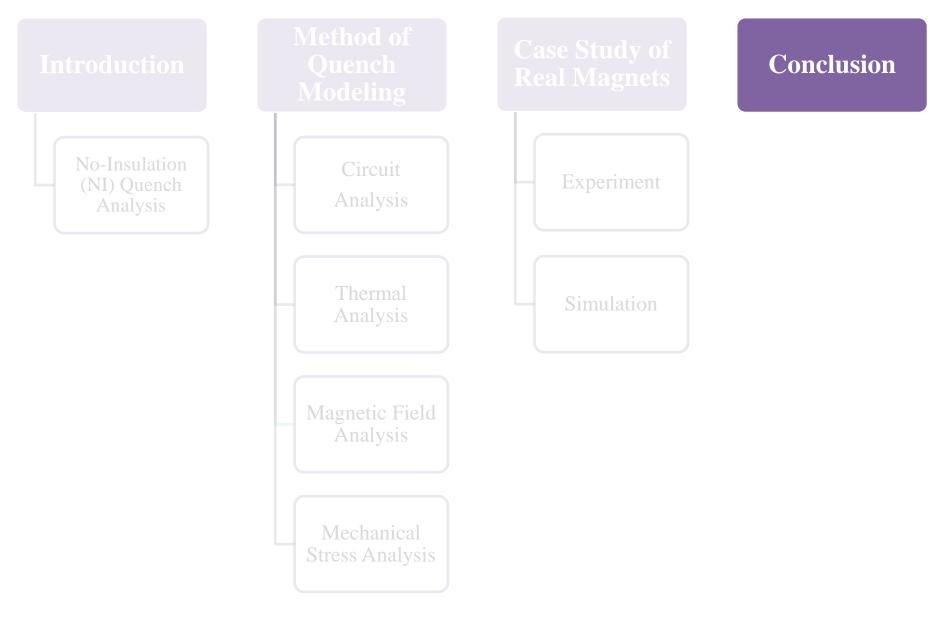
K. Bhattarai <krb15d@my.fsu.edu>



Case Study of Real Magnets

Conclusion

□ Case Study III: 14.36 T NI REBCO insert in 31.1 T background magnet.


- With variable Characteristic Resistance, R_c
- With Hall Effect

K. Bhattarai <krb15d@my.fsu.edu>

Points of Discussion

K. Bhattarai <krb15d@my.fsu.edu>

Background

Introduction to Quench Analysis

Conclusion

Discussion and Conclusion

- Characteristic Resistance, R_c seems to be increasing during quench. Possible reason is due to the increase in the resistivity of the contact material. This issue needs further research.
- Hall effect could be another the contributor towards large voltage rise during quench. This effect also needs further research and validation.
- These are some of the first no-insulation simulations
 - i. of real magnets that have quenched.
 - ii. using lumped approach in magnet level.
- Lumped approach: computationally faster than distributed approaches.
- Despite limited accuracy, demonstrates electromagnetic interaction between coils during quench.

Background

Introduction to Quench Analysis Case Studies of Real Magnets

Conclusion

Thank you for your attention!

K. Bhattarai <krb15d@my.fsu.edu>