Series Production of ITER TF Coil Winding Pack (WP) in Japan

N. Koizumi, K. Matsui, T. Hemmi, H. Kajitani, M. Nakamoto, M. Yamane, K. Sakaguchi

National Institutes for Quantum and Radiological Science and Technology (QST)

25th International Conference on Magnet Technology (MT25)
August 29, 2017
RAI-Amsterdam, Netherland
Outline

1. Introduction
2. Double-Pancake (DP) fabrication process and its progress
3. Technical issues in WP fabrication
4. WP fabrication progress
5. Summary
ITER Magnet System

- Correction coil (18 coils)
- TF coil (18 coils)
- PF coil (6 coils)
- CS (6 modules)

Dimensions:
- 18m
- 24m
ITER TF Coil

- **Nominal field** = 11.8T
- **Nominal current** = 68kA

Cross-sectional view of a TF winding pack (WP) (Inboard):

- **Cover plate (CP)**
- **Turn insulation**
- **Insulation around DP**
- **TF conductor (Nb₃Sn CICC)**
- **Laser welding between RP and CP**
- **RP groove to insert conductor**
- **Regular double pancake (DP) (5)**
- **Side DP(2)**
- **Coil case (200 tons)**
- **Winding pack (110 tons)**
Scheme of TF coil procurement in Japan

MHI with Melco & HHI

- 5 JA TF coils
- 4 EU TF coil cases (TFCS)

Toshiba (TSB)

- 4 JA TF coils
- 6 EU TFCSs
Outline

1. Introduction
2. Double-Pancake (DP) fabrication process and its progress
3. Technical issues in WP fabrication
4. WP fabrication progress
5. Summary
1) **DP Winding**

- **TF conductor**: CN, JA, KO

- Winding of 31 DPs were completed.
2) **DP Heat treatment**, 3) **RP fabrication**

- **Heat treatment (650°C, >100h)**
- 31DPs were heat treated.
- 24RPs were completed.

RP made by TSB

RP made by MHI
4) Transfer and turn insulation

- Turn insulation of 20DPs were completed.
5) DP insulation, impregnation

- DP insulation
- Completed DP
- Impregnation of DP
- 15DPs were completed.
Outline

1. Introduction
2. DP fabrication process and its progress
3. Technical issues in WP fabrication
4. WP fabrication progress
5. Summary
1. 7 completed DPs are stacked with inserting glass fabric between each DP in order to adjust position of DP and achieve good bonding between DPs;

2. 15 multilayer GK ground insulation tapes are wrapped around the stacked DPs;

3. electrical connections are established between adjacent DPs by means of an inter-DP joint;

4. the ground insulation is vacuum-pressure impregnated (VPI) with inter-DP glass fabric to form a rigid WP;

5. cooling pipes are assembled, and

6. final inspection of WP, including cold test at 80 K, is performed.
Height of a WP is limited to be below only 3 mm thicker than the nominal, 824.6mm, to enable WP to be inserted into coil case with proper margin.

DP height becomes higher due to distortion by CP welding and WP height is accumulated by seven DPs. 5 mm glass fabric layer exists between each DP to compensate this distortion in original manufacturing plan.

Accordingly, compression of WP impregnation mold makes the glass fabric layer thinner. This may originate;

1. winkle of ground insulation tape wrapped around WP; and
2. degradation of conductor next joint and/or impregnated DP insulation at conductor outlet by local bending of the short conductor between joint and DP.
Measures to this technical issue

- Inter-DP glass layer thickness is made thinner, 2 mm instead of 5 mm, with compensating DP distortion by CP welding.

- WP ground insulation tapes are wrapped around WP with applying tensile force of 120 N by automatic taping machine.

- Cu shim between DP joints is soldered after compressing WP impregnation mold.
Flatness of impregnated DPs are within 2 mm as planned.

Local flatness of impregnated DP is much better than those after CP welding.
Other technical issues in WP fabrication

- Current center line measurement.
 ➔ Tue-Af-Po2.03-06: M. Nakamoto, et al., “Current Center Line Measurement of ITER TF Coil”

- Joint resistance measurement at normal state
Outline

1. Introduction
2. DP fabrication process and its progress
3. Technical issues in WP fabrication
4. WP fabrication progress
5. Summary
DP stacking for 2 WPs was completed.
1st WP ground insulation was completed.
- Curing of 1st WP is finished and WP is being cooled down.
- Capacity measurements between DPs and between DP and mold indicates good impregnation.

Normalized capacitance during WP impregnation

- Pressure (kPa)

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>0</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram:
- Normalized capacitance for various DPs and between DPs and mold.
- Pressure curves for different DPs and between DPs and mold.

Figures:
- WP impregnation setup.
- Capacitance plot showing stages of WP impregnation.
- Pressure chart indicating stages of impregnation.
5. Summary

- Optimized manufacturing plan is established to solve the technical issues in DP and WP fabrication.

- As part of this purpose, DP flatness of 2 mm was achieved by putting glass fabric on locally distorted and/or dented area of DP surface during preparation of DP impregnation. This compensates local distortion, which is originated by CP welding, resulting in making DP stacking process much easier (positive to keep tight tolerance of WP height).

- The series production of DP and WP is in proceeded according to the optimized manufacturing plan and 31 DP winding, 20 DP transfer and turn-insulation, 15 DP impregnation was completed in Japan. In addition, curing of 1st WP impregnation is finished and WP is being cooled down.