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Introduction Training History Lorentz Force Thermal Cycling

MICE: Muon lonization Cooling Experiment » Re-training: similar training curves » Quasi-static simulation: » Warm-up: coils return to original positions
Beamline presently collecting data at Rutherford apply 25%, 40%, 607, 80% and 100% » Sub-sequent cool-down: identical to initial cool-down

Appleton Laboratory, UK 10% load steps, reduce to zero in-between > True for all coils
Part of MICE: tracker magnets _ g Radial displacement of E2 coil shown in Fig. 4
» large bore solenoids e Coil slips out of its pocket

» NbTi, 4T on-axis field _ J- M1 coil: similar, but not as severe
» Each tracker consists of five solenoids (Fig. 1)

» Fig. 6 shows radial displacement for E2 coll

N
N
Ul

» E2: additional longitudinal force, pulling E2 to C
coil (1.6 MN)

Training: 15 quenches necessary

» Usually E2 quenches (both trackers)

» Both tracker magnets do not ‘remember’ training
» Thermal cycling: re-train magnets
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Figure 2: Training history of the MICE spectrometer solenoids. 0% 950 3001 - Mechan.+thermal cycling
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Figure 1: Geometry of the MICE spectrometer solenoid. All
dimensions in mm.
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» Not obvious that margin is issue 0% —100% —5 0% Figure 6: Radial displacement of the inner radius of the E2 coil for the

~80° | » Al: thermal expansion coefficient twice as large _ | | , | | | | - ) . .
(70-80% at first quench) o — initial cool-down and after mechanical and thermal cycling.

» Coils detach from bobbin  (m)

» Investigate other potential issues

» Approach: 2D/3D FEA » Each coil held longitudinally by Al-bobbin

| Figure 4: Radial displacement of the lower E2 boundary for various Improvements
. COMSOL Multiphysics » E2/M1: lower flange detaches from coil mechanical load scenarios.

» Use contact elements between coil and bobbin » E2 held less strongly in place than other coils » Focus on E2: time-dependent study (arbitrary » Coil geometry can be optimized to increase
» Load steps: » Focus on E2 for further analysis time-base, no inertial effects) temperature margin

wire-pretension — cool-down — Lorentz force Load case 14 Surface: Displacement field, R component Simulation suggests that displacement cannot be » Steel bobbin: similar thermal expansion coefficient to

» Quasi-static and transient - . - expected to be smooth NbTi

t/To = 0.15 and 0.275: jumps in radial displacement » Coil movement during operation: minimize with
Geometry 584l I N sufficient wire pre-tension (120 MPa)

» Stick-slip scenario not observed in this case

» Coil bobbin: Al-6061-T6
» Facilitates quench-back
» Inner/outer radius: 245/350 mm

Conclusion

Different thermal expansion coefficients: bobbin
shrinks at different rate than NbTi solenoids

Table 1: MICE Coil Configuration |
259mm

§ dr Z dz J 270mm Coils detach from bobbin

(m) (m) (m) (A/mm?) - " ' ‘ zggmm ‘ Coils held longitudinally by flanges
k| ] mm . :
M1 0.258 0.0462 -3.7116 0.2012 118 B q ', | 300mm| E2/M1: coils partially detach from flange

M2 0258 0.0309 -4.1508 0.1995 142 3;822 Iéc2>r)entz—force: coils can slip in coil pocket (shown for

E1 0.258 0.0609 -5.8582 0.1106 149 6.04 B 000 005 010 015 020 025 030 035 040 Stick-slip — heating — can trigger quench

YT, (1)

SS 0.258 0.0221 -5.8582 1.3143 148 02 025 03 035 0.4 m | | o | | Thermal cycling: resets coils (consistent with
E2 0258 0.0678 -6.0063 0.1106 148 Figure 3: Deformation plot of the E2 coil and the bobbin (deformation Figure 5: Time dependent radial displacement of different points on Observation)

ten times amplified). The colour indicates the radial displacement. the lower E2 boundary.
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