

Introduction

- MICE: Muon Ionization Cooling Experiment
- Beamline presently collecting data at Rutherford Appleton Laboratory, UK
- Part of MICE: tracker magnets
 - large bore solenoids
 - NbTi, 4T on-axis field
 - Each tracker consists of five solenoids (Fig. 1)
- ► Training: 15 quenches necessary
 - Usually E2 quenches (both trackers)
- Both tracker magnets do not 'remember' training
- Thermal cycling: re-train magnets

	4		2	544	>
245	M1	M2	E1	С	E2 e

Figure 1: Geometry of the MICE spectrometer solenoid. All dimensions in *mm*.

- Not obvious that margin is issue (70–80% at first quench)
- Investigate other potential issues
- ► Approach: 2D/3D FEA
 - COMSOL Multiphysics
 - Use contact elements between coil and bobbin
 - Load steps: wire-pretension \rightarrow cool-down \rightarrow Lorentz force
 - Quasi-static and transient

Geometry

- ► Coil bobbin: Al-6061-T6
- Facilitates quench-back
- Inner/outer radius: 245/350 mm

Table 1: MICE Coil Configuration

	\mathbf{r}_{i}	dr	\mathbf{z}_1	dz	J
	(m)	(m)	(m)	(m)	(A/mm^2)
M1	0.258	0.0462	-3.7116	0.2012	118
M2	0.258	0.0309	-4.1508	0.1995	142
E1	0.258	0.0609	-5.8582	0.1106	149
SS	0.258	0.0221	-5.8582	1.3143	148
E2	0.258	0.0678	-6.0063	0.1106	148

Analysis of the Training Behaviour of the MICE Spectrometer Solenoid Holger Witte¹, Heng Pan², A. Marone¹, S. Prestemon², A. Bross³ ¹Brookhaven National Laboratory, Upton, USA // ²Lawrence Berkeley National Laboratory, Berkeley, USA // ³Fermilab, Batavia, USA

Figure 6: Radial displacement of the inner radius of the E2 coil for the initial cool-down and after mechanical and thermal cycling.

Improvements

- NbTi

Conclusion

- E2)

Thermal Cycling

Warm-up: coils return to original positions Sub-sequent cool-down: identical to initial cool-down True for all coils

► Fig. 6 shows radial displacement for E2 coil

Coil geometry can be optimized to increase temperature margin Steel bobbin: similar thermal expansion coefficient to Coil movement during operation: minimize with sufficient wire pre-tension (120 MPa) Stick-slip scenario not observed in this case

Different thermal expansion coefficients: bobbin shrinks at different rate than NbTi solenoids Coils detach from bobbin

Coils held longitudinally by flanges

► E2/M1: coils partially detach from flange Lorentz-force: coils can slip in coil pocket (shown for

• Stick-slip \rightarrow heating \rightarrow can trigger quench Thermal cycling: resets coils (consistent with) observation)