32T Superconducting Magnet Protection System

P.D. Noyes,
W. A. Coniglio,
A. V. Gavrilin,
S. T. Hannahs,
B. Jarvis,
W.D. Markiewicz,
A. Powell,
E. Stiers,
A.J. Voran,
H.W. Weijers
A. Zeller

MT25
25th International Conference on Magnet Technology

Amsterdam
August 27 – September 1, 2017
Coil Parameters

<table>
<thead>
<tr>
<th>Coil Parameters</th>
<th>HTS</th>
<th>LTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coil 1</td>
<td>Coil 2</td>
</tr>
<tr>
<td>Field Contribution</td>
<td>10.8</td>
<td>6.2</td>
</tr>
<tr>
<td>Operating Current</td>
<td>173</td>
<td>173</td>
</tr>
<tr>
<td>Inner diameter</td>
<td>40</td>
<td>164</td>
</tr>
<tr>
<td>Outer diameter</td>
<td>140</td>
<td>232</td>
</tr>
<tr>
<td>Coil Height</td>
<td>178</td>
<td>320</td>
</tr>
<tr>
<td>Ramp to full field</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Self inductance</td>
<td>17.0</td>
<td>194</td>
</tr>
<tr>
<td>LTS to HTS Mutual</td>
<td>22.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>inductance</td>
<td></td>
</tr>
</tbody>
</table>
Conductor Performance

Improved with later acquisition date

Short sample I_c varies within piece length
Average I_c generally increased with time

Mostly M4
(2014-early 2015)

Mostly M3,
early deliveries

Ordered in sequence on increasing I_c
Heater Design Parameters

<table>
<thead>
<tr>
<th>32T Protection Parameters</th>
<th>Coil 1</th>
<th>Coil 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater active area percent</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>Heater disk resistance @ 4.2K</td>
<td>3.3 Ohms</td>
<td>5.1 Ohms</td>
</tr>
<tr>
<td>Number of heaters (clusters)</td>
<td>18</td>
<td>34</td>
</tr>
<tr>
<td>Number of heaters in series (1 cluster)</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Number of heater clusters in parallel</td>
<td>6</td>
<td>17</td>
</tr>
<tr>
<td>Heater Current</td>
<td>23.7 A</td>
<td>23.2 A</td>
</tr>
<tr>
<td>Total Heater Voltage</td>
<td>287 V</td>
<td></td>
</tr>
<tr>
<td>Weighted Average Heater Power</td>
<td>0.15 MW</td>
<td></td>
</tr>
</tbody>
</table>
Protection Circuits
Distribution

Coil 1
Heaters

Coil 2
Heaters

Positive Lead

Negative Lead
31 Lead-acid batteries in series
- Batteries are distributed across 11 shelves in 2 racks
- Battery Capacity - 100 A*hr
- Idle terminal voltage – 390 V
- Load terminal voltage – 270 V
- Peak Current – >600 A
- Pulse Duration – 1.0 sec
- 250 A Bussman Fuses at positive terminals

600 A DC

Battery Voltage 1
Battery Neg to Ground
Heater Current

Fuse Voltage (V)

Time at current (s)

Voltage

Time (s)

Heater Current

Battery Bank
Battery Bank has a peak possible current of 1600 A and the switch boxes must be able to break it.
Protection Logic - Balancing

HTS has 2 parallel detection systems for redundancy

Primary HTS Protection Channels
1. \(V_1 - V_3 \)
2. \(\alpha V_2 - (V_1 + V_3)/2 \)
3. \(V_4 - V_6 \)
4. \(\beta V_5 - (V_4 + V_6)/2 \)
5. \(V_{\text{lead in}} = V_i - V_k \)
6. \(V_{\text{lead out}} = V_i - V_j \)
7. \(V_{\text{bus out}} = V_a - V_k \)
8. \(V_{\text{bus in}} = V_e - V_i \)
9. \(V_{\text{jumper}} = V_h - V_d \)
10. \(V_d \) to Ground
11. Quench Com Loop

Secondary HTS Protection Channels
1. \(\text{Coil1} - C_0 * \text{Coil2} \)
2. \(\text{Coil1} + C_0 * \text{Coil2} \)
3. Quench Com Loop
Protection Logic

Thresholds and Filtering

Primary Trip Thresholds

<table>
<thead>
<tr>
<th>Channel</th>
<th>Voltage Threshold</th>
<th>Fault Counter Delay</th>
<th>Low Pass Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. V_1-V_3</td>
<td>100 mV</td>
<td>14 ms</td>
<td></td>
</tr>
<tr>
<td>2. αV_2-(V$_1$+V$_3$)/2</td>
<td>100 mV</td>
<td>14 ms</td>
<td></td>
</tr>
<tr>
<td>3. V_4-V_6</td>
<td>100 mV</td>
<td>14 ms</td>
<td></td>
</tr>
<tr>
<td>4. βV_5-(V$_4$+V$_6$)/2</td>
<td>100 mV</td>
<td>14 ms</td>
<td></td>
</tr>
<tr>
<td>5. $V_{lead \ out}$</td>
<td>100 mV</td>
<td>14 ms</td>
<td></td>
</tr>
<tr>
<td>6. $V_{lead \ in}$</td>
<td>100 mV</td>
<td>14 ms</td>
<td></td>
</tr>
<tr>
<td>7. $V_{bus \ out}$</td>
<td>100 mV</td>
<td>14 ms</td>
<td></td>
</tr>
<tr>
<td>8. $V_{bus \ in}$</td>
<td>100 mV</td>
<td>14 ms</td>
<td></td>
</tr>
<tr>
<td>9. $V_{bus \ mid}$</td>
<td>100 mV</td>
<td>14 ms</td>
<td></td>
</tr>
<tr>
<td>10. V_d to Ground</td>
<td>30 V</td>
<td>14 ms</td>
<td></td>
</tr>
<tr>
<td>11. Quench Com Loop</td>
<td>1 V</td>
<td></td>
<td>60 Hz</td>
</tr>
</tbody>
</table>

Secondary Trip Thresholds

<table>
<thead>
<tr>
<th>Channel</th>
<th>Voltage Threshold</th>
<th>Zener Diode Filter</th>
<th>Low Pass Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $\text{Coil1} - C_0 \times \text{Coil2}$</td>
<td>500 mV</td>
<td>1.8 V</td>
<td>30 Hz</td>
</tr>
<tr>
<td>2. $\text{Coil1} + C_0 \times \text{Coil2}$</td>
<td>8 V</td>
<td>1.8 V</td>
<td>30 Hz</td>
</tr>
<tr>
<td>3. Quench Com Loop</td>
<td>TTL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The data in the following slides was taken under the following conditions:

- HTS Coils were energized
- LTS Power supply was controlling current at 0
- The protection system was active
- All normal zones were initiated by the heaters and not spontaneous
- Faults occurred at roughly 5 T
47.6 A Trip – Fault Signal

- V4-V6 Passes Threshold
- Quench Declared
- Fault begins
- To recover
- Heaters Activate

Graph showing voltage over time with markers indicating key events.
47.6 A Trip – Normal Zone Development

Extraction Resistor Engaged

Mid-plane Modules Show higher resistance

Heaters Activate

Heaters Deactivate

Coil2 Ends remain mostly superconducting

Voltage

Time (s)
47.6 A Trip - Evolution

Heater Pulse

Slight Current Reduction

HTS Fully Superconducting
51.2 A Trip – Evolution

- Slight Current Reduction
- V1 Thermal Run away
- Heater Pulse
Conclusion

• Quench Protection System and Interlocks are working as designed
• Mechanical motion has been observed and activated the protection system
• Heater Current is slightly low – more batteries will be added for a total of 36
• The current at which the heaters begin to be effective is close to prediction
• Only a limited fraction of I_c has been reached in the conductor
• No damage has been observed