Design and Manufacturing of the First Industrial-Grade CLIQ Units for the Protection of Superconducting Magnets for the High-Luminosity LHC Project at CERN

Felix RODRIGUEZ MATEOS, Stavroula BALAMPEKOU, <u>David CARRILLO</u>, Knud DAHLERUP-PETERSEN, Mathieu FAVRE, Joaquim MOURAO, and Bozhidar PANEV

25th International Conference on Magnet Technology

29th August 2017

CONTENTS

- Δ Introduction
- Δ Layout and components of a CLIQ unit
- Δ Tests
- Δ Conclusions

Introduction

Coupling-Loss Induced Quench (CLIQ) is an innovative quench protection method based on a discharge resulting in high inter-filament and inter-strand coupling losses

Courtesy Emmanuele Ravaioli

Introduction

- Δ It will be used in the HL-LHC as a complement of the Quench Heater systems
- Δ Two different prototype versions of CLIQ have been manufactured at CERN

How to create the capacitive discharge?

Layout of the CLIQ unit

User interface

Capacitor charger panel

Trigger card panel

Safety first

- Δ Equipment stop button stop, mains current breaker, on/off switch
- Δ Interlock triggers when user opens the door for capacitance selection
- Δ Padlocks on the capacitance selectors
 - -> The stored energy is dissipated in the resistor bank

Energy storage circuit

Δ Capacitor Bank: 5x10 mF, 1000 V capacitors in parallel (dry, bipolar, metallized polypropylene)

Δ Charger: 100 mA charging current, 1000 V in ~8 min for 50 mF

 Δ Resistor bank: 40 resistors, 100 W, 1 k Ω (Req=400 Ω)

 Δ 24 VDC relays

Capacitor Charger

CAPACITOR AND RESISTOR BANK

Trigger and discharge circuit

- Δ Two 24 VDC power supplies
- Δ Two trigger circuit generators (on the same board)
- Δ Two pulse transformers boards
- The user (i.e. Quench Detectors) starts the trigger by opening a current loop → 500 ms 10 kHz pulse train
- Δ Two Bi-directional Controlled Thyristors

A glimpse into the CLIQ unit

Individual System Tests

- Δ Warm 7 mH load
- Δ Hi-pot 2 kV
- Δ Thyristors performance
- Δ Power shutdown
- Δ Discharge 100 V to 1000 V
- Δ Visual displays

Conclusions

- The CLIQ v2 units are on the starting block to be used in an extensive R&D program at the test facilities at CERN on superconducting magnets also for the HL- LHC program
- Δ A further optimization of parameters and the unit is expected in the following months -> CLIQ v3

Conclusions

Δ CLIQ v3 is intended to protect the LHC inner triplet magnets following their installation in 2024-25

Thank you for your attention

References

- [1] E. Ravaioli, V. I. Datskov, C. Giloux, G. Kirby, H. H. J. ten Kate, and A. P. Verweij, "New, Coupling Loss Induced, Quench Protection System for Superconducting Accelerator Magnets" *IEEE Trans. On applied Superconductivity*, vol. 24, No3, June 2014.
- [2] E. Ravaioli, "CLIQ. A new quench protection technology for superconducting magnets," M.S. thesis, Faculty Sci. Technol., Univ. Twente, Enschede, The Netherlands, 2015. [Online]. Available: http://doc.utwente.nl/96069/
- [3] E. Ravaioli, V. I. Datskov, G. Dib, A.M. Fernandez Navarro, G. Kirby, M. Maciejewski, H. H. J. ten Kate, A. P. Verweij and G. Willering, "First Implementation of the CLIQ Quench Protection System on a 14-m-Long Full-Scale LHC Dipole Magnet" IEEE Trans. On applied Superconductivity, vol. 26, No4, June 2016.
- [4] E. Ravaioli, G. Ambrosio, H. Bajas, G. Chlachidze, P. Ferracin, S. Izquierdo Bermudez, P. Joshi, J. Muratore, F. Rodriguez-Mateos, GL. Sabbi, S. Stoynev, E. Todesco, and A. Verweij, "Quench protection performance measurements in the first MQXF magnet models", IEEE Trans. Appl. Supercond., submitted for publication.

