Status of Manufacturing and Testing of SC Magnets for NICA and FAIR Projects

H. Khodzhibagiyan, V. Borisov, V. Kekelidze, S. Kostromin, D. Nikiforov, A. Starikov, G. Trubnikov, JINR, Dubna, and E. Fischer, GSI, Darmstadt
Outline

• Introduction
• Design of the magnets
• Status of SC magnets manufacturing and test
• Facility for magnet assembling and cryogenic tests
• Conclusion
- two injector chains
- new 600 MeV/u SC booster synchrotron
- upgraded SC synchrotron Nuclotron
- SC collider 503 m in circumference with luminosity up to $1 \cdot 10^{27} \text{ cm}^{-2} \text{ s}^{-1}$ for Au$^{79+}$
- two interaction points with MPD and SPD detectors
Design of the NICA booster magnets

The Nuclotron-type design based on a cold, window-frame iron yoke and a winding of the hollow superconductor was chosen for the NICA Booster.

The iron yoke consists of two symmetric parts bolted together. The half-yokes are fabricated of laminated isotropic 0.65 mm thick electrical steel M 530. The laminations are compressed with specific pressure of 5 MPa in the direction of the longitudinal axis of the magnet. The side plates, 10 mm thick, are welded with laminations and to the 20 mm thick stainless steel end plates.

View of the dipole magnet. 1 – lamination, 2 - side plate, 3 - end plate, 4 – SC coil.
Two lattice lenses are connected together using the intermediate cylinder and form a doublet. This doublet is about 1.8 m long and has a rigid mechanical design. It has a demountable construction that allows splitting the doublet into two horizontal parts to install the beam pipe. The doublet is fixed in the cryostat using suspension rods and adjusted in space as one unit.

View of the doublet of the lenses. 1 – half-coil, 2 – half-yoke, 3 – beam pipe, 4, 5 – beam position monitors, corrector magnet
Main characteristics of the cable for the SC magnets

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Booster</th>
<th>Collider</th>
<th>SIS100 QP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling channel diameter, mm</td>
<td>3</td>
<td>3</td>
<td>4.7</td>
</tr>
<tr>
<td>Number of strands</td>
<td>18</td>
<td>16</td>
<td>23</td>
</tr>
<tr>
<td>SC strand diameter, mm</td>
<td>0.78</td>
<td>0.9</td>
<td>0.8</td>
</tr>
<tr>
<td>Superconductor</td>
<td></td>
<td>Nb – Ti</td>
<td></td>
</tr>
<tr>
<td>Cu/SC/CuMn ratio</td>
<td>1.26 / 1 / 0</td>
<td>1.33 / 1 / 0</td>
<td>2.2 / 2.3 / 1</td>
</tr>
<tr>
<td>Diameter of SC filaments, µm</td>
<td>7</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Twist pitch of filaments, mm</td>
<td>7</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>Cable outer diameter, mm</td>
<td>6.6</td>
<td>7.0</td>
<td>8.38</td>
</tr>
<tr>
<td>Operating current (1.8T, 4.65K), kA</td>
<td>9.68</td>
<td>10.4</td>
<td>10.5</td>
</tr>
<tr>
<td>Critical current (2.5T, 4.7K), kA</td>
<td>14.2</td>
<td>16.8</td>
<td>21.0</td>
</tr>
</tbody>
</table>
Main Characteristics of the Magnetes for NICA Booster

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Dipole</th>
<th>Lens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of magnets</td>
<td>40</td>
<td>48</td>
</tr>
<tr>
<td>Max. magnetic field (gradient)</td>
<td>1.8 T</td>
<td>21.5 T/m</td>
</tr>
<tr>
<td>Effective magnetic length</td>
<td>2.2 m</td>
<td>0.47 m</td>
</tr>
<tr>
<td>Beam pipe aperture (h/v)</td>
<td>128 mm/ 65 mm</td>
<td></td>
</tr>
<tr>
<td>Radius of curvature</td>
<td>14.09 m</td>
<td>-</td>
</tr>
<tr>
<td>Overall weight</td>
<td>1030 kg</td>
<td>110 kg</td>
</tr>
</tbody>
</table>
Status of Manufacturing the Magnets for NICA Booster

- Yoke of the Dipole Magnets – 40 or 100%
  Coil of the Dipole Magnets - 40 or 100%
- Yoke of the Quadrupole Magnets – 48 or 100%
  Coil of the Quadrupole Magnets - 38 or 79%
- Yoke of the Corrector Magnets – 29 or 90%
  Coil of the Corrector Magnets - 2 or 6%
- Cryostat for magnets – 71 or 100%
Status of Manufacturing the Magnets for NICA Booster

- Supports for the magnets – 71 or 100%
- Bellows for cryostats – 142 or 100%
- HTSC current leads on 10 kA – 10 or 100%
- Beam pipe for dipole magnets – 0%, pilot batch of 6 pcs.
  Beam pipe for doublets - 0%, in manufacturing stage
- Beam position monitor – 0%, in manufacturing stage
The Nuclotron-type design based on a cold, window-frame iron yoke and a winding of the hollow superconductor was chosen for the NICA Collider.

# Main Characteristics of the NICA Collider Magnets

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Dipole</th>
<th>Lens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of magnets</td>
<td>80+8*</td>
<td>86+12**</td>
</tr>
<tr>
<td>Max. magnetic field (gradient)</td>
<td>1.8 T</td>
<td>23.1 T/m</td>
</tr>
<tr>
<td>Effective magnetic length</td>
<td>1.94 m</td>
<td>0.47 m</td>
</tr>
<tr>
<td>Beam pipe aperture (h/v)</td>
<td>120 mm / 70 mm</td>
<td></td>
</tr>
<tr>
<td>Distance between beams</td>
<td>320 mm</td>
<td></td>
</tr>
<tr>
<td>Overall weight</td>
<td>1670 kg</td>
<td>240 kg</td>
</tr>
</tbody>
</table>

* - the magnet for vertical beam separation  
** - the final focus lens
Production of the NICA Collider Magnets

• The completion of cryogenic tests of pre-serial dipole magnet and the start of series production of the SC magnets for the NICA collider are scheduled for autumn 2017.
• A pilot batch of six cryostats for dipole magnets was manufactured.
• The completion of manufacturing of 350 bellows for cryostats is scheduled for 2017.
• The delivery 300 km of SC wire for the NICA collider magnets is completed.
• 380 tons of electrical steel for the magnet yokes were ordered.
Magnets for the SIS100 Synchrotron

All SIS100 main quadrupole and corrector magnets have to be made in JINR, Dubna. The Nuclotron-type magnet design was chosen for the SIS100 magnets.

Characteristics of the SIS100 magnets

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Lattice Quadrupole</th>
<th>Corrector magnet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of magnets</td>
<td>Multipole (Q/S/O)</td>
</tr>
<tr>
<td>Max. field strength, T/m^{n-1}</td>
<td>166</td>
<td>27.77</td>
</tr>
<tr>
<td>Effective magnetic length, m</td>
<td>1.264</td>
<td>1.075</td>
</tr>
<tr>
<td>Aperture diameter, mm</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>Operation current</td>
<td>10512</td>
<td>250/246/240</td>
</tr>
<tr>
<td>Magnet weight, kg</td>
<td>850</td>
<td>200</td>
</tr>
</tbody>
</table>
Magnets for the SIS100 Synchrotron

- A sextupole, a steerer and two quadrupole magnets were manufactured.
- Two FoS units of this magnets were assembled and prepared for cryogenic test.
- The beginning of the serial production of SC magnets for SIS100 in Dubna is scheduled for November 2017.
Facility for SC Magnets Assembling and Cryogenic Tests

- Test facility in full configuration was commissioned in November 2016. JINR and FAIR/GSI participate together in funding of this test facility.
- 60% of the dipole magnets and 10% of the doublets for the NICA booster synchrotron have successfully passed the tests up to August 2017.
Facility for SC Magnets Assembling and Cryogenic Tests

The test facility includes the following sections:

• Manufacture of the SC cable
• Manufacture of the SC coils
• Assembly of coil with yoke and brazing of cooling channels
• Electrical and hydraulic measurements
• "Warm" magnetic measurements
• Vacuum testing
• Placing the magnet in its cryostat
• Cryogenic system, including three helium refrigerators, compressor and liquid $He$ and $N_2$ supply
• 6 test benches operating in parallel
• 2 power converters on 15 kA and 12 HTS current leads
SC Cable Production

View of Nuclotron-type cable:
1 – cooling tube, 2 – SC wire, 3 – Ni-Cr wire, 4 and 5 - insulation

Machine for production Nuclotron-type superconducting cable
Production of SC Coil

SC Coil manufacturing
Coil with Yoke Assembling

Half-coils assembling with half-yokes for the booster dipole magnet and doublet of the lenses
24 steering magnets will have two coils each (horizontal and vertical dipole coils) and 8 corrector magnets will contain four coils each (normal and screw quadrupole and sextupole coils).

The iron yoke (left) and the coil (right) for corrector magnet
60% of the dipole magnets for the NICA booster synchrotron was successfully passed cryogenic test and can be installed in the tunnel of the accelerator. Magnetic measurements have good repeatability and their magnitude is within the permissible values. The results are discussed in more detail in the report Tue-Af-Po2.01-10 at this conference.

Relative integral harmonics of the magnetic field in the aperture of the NICA booster magnet at the radius of 30 mm as a function of the magnetic field in the magnet center.
Cooling-down (left) and warm-up (right) of the dipole magnet for the NICA booster. Black line is helium inlet and red line – outlet of the magnet.
Series Test of the magnets

Series dipole magnet (left) and doublet (center) for NICA booster, and pre series dipole magnet for NICA collider (right).

H. Khodzhibagiyan
Conclusion

• Serial production of the magnets for the NICA booster is in the stage of completion.
• Facility for cryogenic tests of the SC magnets for the NICA and FAIR projects was put into operation in 2016.
• 60% of the dipole magnets for the NICA booster was successfully passed cryogenic test and can be installed in the tunnel of the accelerator.
• Completing the cold tests and start installation in the tunnel of the magnets for the NICA booster is scheduled for mid-2018. Start of the booster commissioning is scheduled to the end 2018
• The pre series dipole magnet for the NICA collider is currently in the stage of cryogenic tests.
• The beginning of the serial production of the collider magnets is scheduled for the second autumn 2017.
• Two SIS100 FoS units are assembled and prepared for cryogenic test.
• The beginning of the serial production of SC units for SIS100 in is scheduled for November 2017.
Thank you for your attention