Thu-Af-Po4.05-19 [77] Investigation of a Surface PM Machine with Segmented-Eccentric Magnet Poles Libing Jing¹, Zhenghao Luo², Ronghai Qu¹, Wubin Kong¹, Yuting Gao¹, Hailin Huang¹

- 2. College of Electrical Engineering and New Energy, China Three Gorges University, Yichang, China

In general, reducing the torque ripple by changing the shape of the permanent magnet (PM) has a negative effect on the electromagnetic torque increases magnet cost. Magnet segmentation with Halbach array can achieve low total harmonic distribution and reduce torque ripple, which depend magnet usage. eccentric segmented magnet pole with Halbach array is carried out, which aims to unite the advantages of section Halbach array eccentric magnets to achieve low torque ripple and high usage efficiency, while avoiding the decrease of the fundamental amplitude of air-gap magn flux density and the torque ripple cause by inter-pole leakage flux.

✤ A 12-slot/10-pole PM synchronous machine.

 \mathbf{V}

ults

 \clubsuit There are two types of parameters, one is the magnetization angle $\Delta \theta$, and the other is the offset distances.

model and magnet pole geometry

each magnet pole is divided into 3 segments, a mid-magnet and two side-magnets which may have different B_r and circular arc centers. The centers of these three parts are on a line and two side-magnets are concentric, not as the mid-magnet.

The flux distribution.

The newly developed magnet pole can decrease the total harmonic distortion (THD)

$$THD = \frac{\sqrt{\sum_{n=2}^{\infty} B_n^2}}{B_1}$$

The traditional magnet pole THD is 39.8% and the proposed magnet pole THD is 12.3%.

1. State Key Laboratory of Advanced Electromagnetic Engineering & Technology, Huazhong University of Science & Technology, Wuhan, China

Background

Objectives

			Conclu	JSION	
*	An unequal-magnet poles.	height pole permanent magn	net machin	ne has been proposed, which l	has se
*	It can obtain high an	mplitude of fundamental air-	-gap flux	density, low cogging torque,	high
	and low harmonics.				
¢	The selection methods studied in the future.	od of the polar arc coefficie	ent and th	ne optimum permanent magn	et th
		Quantity	Value	Quantity	Va
		Rated speed (rpm)	600	Stator yoke height (mm)	4
S		Rated speed (rpm) Slot opening (mm)	600 2	Stator yoke height (mm) Rotor outer diameter (mm)	ے 5
eters		Rated speed (rpm) Slot opening (mm) Pole number	600 2 10	Stator yoke height (mm) Rotor outer diameter (mm) Shaft diameter (mm)	2 5 2
imeters		Rated speed (rpm) Slot opening (mm) Pole number Stator slot number	600 2 10 12	Stator yoke height (mm) Rotor outer diameter (mm) Shaft diameter (mm) Mid-magnet Br (T)	2 5 1
arameters		Rated speed (rpm) Slot opening (mm) Pole number Stator slot number Air-gap length (mm)	600 2 10 12 1	Stator yoke height (mm) Rotor outer diameter (mm) Shaft diameter (mm) Mid-magnet Br (T) Side-magnet Br (T)	2 5 1 1.
Parameters		Rated speed (rpm) Slot opening (mm) Pole number Stator slot number Air-gap length (mm) Stator inner diameter (mm)	600 2 10 12 1 61	Stator yoke height (mm) Rotor outer diameter (mm) Shaft diameter (mm) Mid-magnet <i>Br</i> (T) Side-magnet <i>Br</i> (T) Magnet thickness (mm)	2 2 1 1.
Parameters		Rated speed (rpm) Slot opening (mm) Pole number Stator slot number Air-gap length (mm) Stator inner diameter (mm) Stator outer diameter (mm)	600 2 10 12 1 61 110	Stator yoke height (mm) Rotor outer diameter (mm) Shaft diameter (mm) Mid-magnet <i>Br</i> (T) Side-magnet <i>Br</i> (T) Magnet thickness (mm) Eccentricity of mid-magnet (mm)	4 5 1. 1. 3 11.

Back-EMF and harmonic

The phase back-EMF amplitude of proposed magnet pole and traditional pole are 2.26 V and 1.33 V, respectively.

From the FEA results, the advantage of the proposed magnet shaping technique is validated. It can obtain high amplitude of fundamental air-gap flux density, low cogging torque, high electromagnetic torque and low harmonics. The following is further optimization of the shape and direction of magnetization.

ented and eccentric

tromagnetic torque

ess will be further

Optimized design

The electromagnetic torque has a tendency to rapid increase with the increase of magnetization angle and the optimal angle is $\Delta\theta$ =68°, while the machine can deliver optimum electromagnetic performance with the optimized Halbach magnetization array. The electromagnetic torque increases first and then decreases with the increase of eccentricity, it shows the optimal difference between e_1 and $e_2 d_0 = 14.75$ mm.