Optimal Design of PMa-synRM for electric propulsion system considering wide operation range and demagnetization

Gyeong-Jae Park¹, Jinseok Kim¹, Sang-Yong Jung¹

1. Sungkyunkwan University, Suwon, 16419, Republic of Korea

- > Synchronous reluctance motor (SynRM) has advantages on torque density, price of manufacturing, and cost robustness.
- > However, synRM is lack of linkage flux produced by field magnet, since it does not contain permanent magnet.
- Pma-synRM can guarantee higher torque density, wide operation region compared to synRM with considerate design.

Conducting optimal design considering wide operation range, torque density and torque ripple. > Demagnetization of the permanent magnet is considered as well by optimizing position of the permanent magnet.

Background

> Permanent magnet assisted synchronous motor(PMa-synRM) enables increasing operation region by supplementing reasonable amount of permanent magnet.

Objectives

- Optimal design is conducted to have robust performance at

$$-_{M} [Nm/kg]$$

$$\frac{3}{2} \frac{P}{2} [\lambda_f i_q + (L_d - L_q) i_d i_q]$$
Alignment
Reluctan

Thu-Af-Po4.05-08 [66]

Permanent Magnet Position Optimization

- > Optimizing position of permanent magnet by considering combination of the magnet set with the number of the PM less than 8.
- PM combination of Top 10 ranks according to the equation of decision are shown below.
- > The role of PM is providing reasonable field flux to widen operating region and preventing flux to penetrate through the air layers.
- \blacktriangleright Magnets located at the side (3,5,6,8,9,11,12) are more effective than those at the center (1,2,4,7,10)
- \blacktriangleright Magnets located at the end of the layer ((6, 9, 12)) are vulnerable to the demagnetization.

Rank	1	2	3	4	5	6	7	8	9	(10)	(11)	(12)	Torque [P.U]	Torque Density [P.U]	Torque Ripple [%]	Demag*	Reluctance Alignment Ratio [%]
Proto	-	-	-	-	_	-	-	-	-	-	-	-	1	1	13.7	-	
1	-	-	\checkmark	-	\checkmark	-	-	\checkmark	-	-	\checkmark	-	1.15	1.12	17.7	-	80.59
2	\checkmark	\checkmark	-	-	\checkmark	-	-	\checkmark	-	-	\checkmark	-	1.12	1.09	17.1	-	79.94
3	-	-	-	-	-	\checkmark	-	-	\checkmark	-	\checkmark	\checkmark	1.10	1.07	18.0	\checkmark	74.23
4	\checkmark	-	-	\checkmark	\checkmark	-	-	\checkmark	-	-	\checkmark	-	1.09	1.06	15.1	-	76.74
5	-	-	-	-	-	\checkmark	\checkmark	-	\checkmark	\checkmark	-	\checkmark	1.13	1.09	21.5	\checkmark	76.80
6	_	-	-	-	_	\checkmark	-	-	\checkmark	\checkmark	-	\checkmark	1.10	1.07	20.1	\checkmark	79.50
7	-	\checkmark	-	\checkmark	-	-	\checkmark	-	\checkmark	\checkmark	-	\checkmark	1.10	1.07	21.0	\checkmark	74.27
8	-	\checkmark	-	\checkmark	\checkmark	-	-	\checkmark	-	-	\checkmark	-	1.09	1.05	18.9	-	74.62
9	\checkmark	-	-	-	\checkmark	-	-	\checkmark	-	\checkmark	\checkmark	-	1.08	1.05	15.2	-	74.80
10	\checkmark	-	-	-	\checkmark	-	-	\checkmark	-	-	\checkmark	-	1.09	1.06	20.9	-	81.57

Conclusion

- Finally, optimally designed model produces about 15% more torque, 12% more torque density with 14.0% of torque ripple.
- > Designed model is robust to the demagnetization at 180 degrees celcius with N38UH permanent magnet.
- > Operating range is dramatically increased at high speed region as intended.
- > Designed motor produces 19% of alignment torque, and 81% of reluctance torque at base speed.