Analysis on a Cooling Experiment of Prototype Thermal Siphon System for Single Crystal Silicon Ingot Growing Magnet

Woo Seung Lee1, Kwang Myung park1, Yong Chu2, and Kwang Pyo Kim3,*

2. National Fusion Research Institute (NFRI), 169-148 Gwhak-ro, Yuseong-gu, Daejeon 34133, Korea (e-mail: kpkim@nfri.re.kr) * Corresponding Author

Introduction

- Silicon wafer is usually made from silicon ingot. Czochralski (CZ) process is the most popular way to build the silicon ingot by growing the ingot from molten silicon in a crucible.
- Single Crystal silicon ingot growing (SCG) superconducting magnet is one of the most important parts of the system for CZ process.
- Design method and cooling performance of prototype thermal siphon system is investigated as a candidate of cost effective cooling system for SCG magnet.

Schematic of Thermal Siphon System

- Thermal siphon cools a heat load by circulating cryogen through a channel (supply & return).
- The cryogen, helium, is filled through access port to helium chamber.
- Liquid helium flows supply line and takes heat away from heat load by conduction of cooling channel.
- Gas and liquid helium returns through return line.
- The gas is liquefied by cold head through recondensing line.
- Thus, the cooling capacity of the cold head is spread to the system.

Design of the Prototype Thermal Siphon System

- Size of the prototype system is determined by analyzing dynamics of helium inside the system.

| Table I. Summary of Full Scale Prototype System
Parameter	Full Scale	Prototype
Height of half of siphon (cm)	48.9	15.6
Heat load (MW)	1.2	0.9
Recondensing block size (cm)	40 X 40	10 X 10
Experimental condition	1.0 MW/44 K (24th stage)	1.0 MW/44 K (24th stage)

| Table II. Cooling System Performance of Prototype System
External Heat Load (MW)	Heating Block Temperature (K)
0	4.94
0.15	4.92
0.30	4.83
0.45	4.79
0.60	4.75
0.75	4.70
0.90	4.67
1.05	4.66
1.20	4.65

Setup of Experiment

- The prototype system has been set for experiment.
- (Cold head)
 ➢ RDK-415D, 1.5 MW/44 K (24th stage).
 ➢ Helium load: Cartridge heater, 36 Ω.
 ➢ Molded into heating block, brazed to the cooling channel.
- (Miscellaneous)
 ➢ Pressure sensor at access port.
 ➢ Censor sensor for heating block.
- Liquid helium level sensor: Opening of the helium chamber.
- Recondensing heater: 41.7 Ω at the bottom of the helium chamber.

Cooling Experiment with Different Heat Load

- Rounding heater generates heat if the chamber pressure becomes too low.
- To prevent negative pressure.
- In the 30 minute average heat input by recondensing heater is 1.45 W.
- Almost full of the cold head cooling capacity is transferred to the system.

Conclusion

- A prototype thermal siphon system for the SCG magnet is designed, and tested with various conditions.
The prototype system showed a stable cooling performance.
The entire cooling capacity of the cold head is supplied to the system.
The temperature and the chamber pressure are remained stable under 0.75 W heat load condition.
Some unstable pressure increase is detected, which can be explained by convection block model.
An advanced topology is suggested.

- Even though some modification is needed in the prototype system, enough possibility of the thermal siphon system has been demonstrated though the research.

Presented at the 25th International Conference on Magnet Technology, 2017 Aug. 27 – Sep. 1, Amsterdam; [Track Classification : H1 - Cryostats and Cryogenics][Program I.D. : Mon-Af-Po1.11-12 [175]]