

Application of NPC topology in a 2.4 MW IGBT converter for a synchrotron particle accelerator Bart-Jan Sustronk, Lou van Lieshout, Dimitrios Papathanasiou

Introduction - Objective

For Electron Synchrotron Radiation Facility ramping injector power supplies are developed. The power supplies will drive the voltage for the dipole electromagnets of the booster of the synchrotron in a triangular like current.

Core requirements

Core requirements.	
Rated voltage	1500 V
Maximum voltage	1650 V
Rated current	1600 A
Output ripple frequency	6400 Hz
Repetition rate of load cycle	4 Hz
Maximum peak to peak voltage ripple	40 V
Synchronization	Synchronized pulse pattern of 2 converters
Load cycling capability	> 90 million load cycles

Design aspects

9-level PWM cascaded Neutral Point Clamped topology

An in-series combination of two IGBT based neutral point clamped topologies was used to feed the dipole electromagnet offering 9-level pulsed width modulation.

Fig.1 Cascaded neutral point clamped

Control method

The switching technique is based on a carrier based 3-level PWM that results to a 9-stage output voltage as shown in Fig.[2].

Fig.2 Derivation of 9-level output voltage after a carrier based PWM

- Oversampled digital feedback control is used for higher dynamic performance implemented in FPGA board
- Step response overshoot: < 3% (1 kV step)
- Step response settling time: < 5 msec (1 kV step)
- Feed forward control for eliminating input voltage variations

Fig.3 Feedback loop, desaturation loop and feed forward control

Neutral Point Control / Balance loop

Design of a neutral point control method to sustain the DC-link capacitors' voltage always equal (balanced) by controlling the current on the neutral point (NP) without influencing the output voltage.

Fig.4 Balance control (Vc1=Vc2)

High power cycling capability

- Thermal behavior simulations for maximum number of power cycles
- · Water cooling applied for power losses extraction

Fig.5 IGBT junction temperature deviation during the nominal load cycle

Implementation – Test results

Dipole converter

Fig.6 & Fig.7 Dipole converter (outside and inside view)

- Cabinets are equipped with HMI offering read access to the operational state of the converters
- All relevant signals can be extracted for evaluation on an oscilloscope

Fig.8 Dipole cabinets on site

Test results

 Test results with the dipole converters connected to the electromagnets and driven by external set-point for the current injection:

Fig.9 Blue: output current, yellow: output voltage driven by external set-point, red: input voltage, green: common mode voltage

 Results from activating the neutral point control in an unbalanced situation:

Fig.10 Yellow: DC-link capacitor Vc1, red: DC-link capacitor Vc2, blue: controller's output

End achievements

Development of ramping injector power supply for a synchrotron particle accelerator

- · Precise high current injection
- · Synchronized operation of 2 converters
- · High accuracy and stability
- High load cycles capability
- · Low peak to peak ripple voltage
- · Human machine interface

