M725 ## Investigation on Thermal and Electrical Characteristics of MgB₂ Magnet Using Partial-Insulation Winding Technique Young-Gyun Kim¹, Jiman Kim^{1, 2}, Byeong-ha Yoo¹, Subok Yun², Duck Young Hwang², Ji Hyung Kim³, Ho-Min Kim³ and Haigun Lee^{1,*} S-glass insulation - 1. Department of Materials Science and Engineering, Korea University, Seoul, Korea - 2. Kiswire Advanced Technology Co., Ltd., Daejeon, Korea - 3. Department of Electrical Engineering, Jeju National University, Jeju, Korea ## Abstract It is generally agreed that the development of a self-protective MgB₂ magnet may not be achieved because of the slow normal-zone propagation velocity of the MgB₂ wires, compared to their low-temperature superconductor counterparts. However, the use of the no-insulation (NI) winding technique can allow the MgB₂ magnet to be self-protecting, because the excessive heat and current generated by local quenching can be automatically bypassed through the uninsulated turns. Nevertheless, to utilize the NI winding technique for large-scale superconducting magnets such as whole-body MRI magnets, it is essential to ameliorate the charging/discharging delays observed in the NI windings. As an alternative solution, this study examines a partially insulated (PI) MgB₂ magnet that employs layer-to-layer insulations only, in the absence of turn-to-turn insulations. A monofilament MgB₂ wire manufactured by Kiswire Advanced Technology Co. Ltd., was used for the fabrication of the PI MgB₂ magnet were investigated to demonstrate the feasibility of employing the PI winding technique to develop a self-protective MgB₂ MRI magnet with fast charging/discharging rates.