

Overview of JT-60SA HTS current lead manufacture and testing

R. Heller, W. H. Fietz, M. Heiduk, M. Hollik, A. Kienzler, C. Lange, R. Lietzow, I. Meyer, T. Richter, and T. Vogel

Introduction

- HTS current leads (CL) reduce power consumption for refrigeration by a factor 3 to 5
- HTS CL Demonstrator by KIT up to 80 kA
- For ITER: Approx. saving of >1 M€ operating cost/year

Design

Copper heat exchanger

- Meander flow type
- Temperature range: 300 K \rightarrow 60 K
- Cooled with 50 K He

HTS module

- Temperature range: 60 K → 4.5 K
- Conduction cooled from 4.5 K end
- HTS material is Bi-2223/AgAu
- Cold contact to superconducting coil
- Copper bar with Nb₃Sn insert
- Clamp contact with Au plated surface

HV insulation

- Glass + epoxy insulation
- Paschen tightness

Manufacturing, assembly and cold test

- Half pieces manufactured in main workshop of KIT
- Assembly carried out in ITEP
- Acceptance test at cold conditions performed in test facility CuLTKa

Completed HTS current lead for JT-60SA TF coil system

JT-60SA HTS current leads

- KIT responsible for design, manufacturing and testing of
 - 20 HTS CL for PF/CS (20 kA) and
 - 6 HTS CL for TF (26 kA)

Acceptance test results

- The cold acceptance test provides information about the operation parameters
 - · the He mass flow rate for the heat exchanger
 - the heat load at 4.5 K
 - · the safety margin in case of a loss of flow accident
- Furthermore, the TF CLs were subject to a six hours' test at 25.7 kA to prove their long-time stability
- One PF CL pair was also tested in pulsed operation

Left: picture of the test facility CuLTKa showing two test cryostats (left and right) and the valve box (center). Right: test setup located within a test cryostat with two current leads (1,2) connected by a short circuit bus bar (3).

- Design agreed with JAEA in early 2012
- Design checked by testing W7-X current leads under JT-60SA relevant current scenarios

SU K neilum mass now rate vs current (left) and neat load at the 4 K end vs temperature gradient alone HTS part of the TF (black) and PF (blue) HTS CL (right).

Main results of the JT-60SA TF and PF current lead series tests: average numbers are given for the TF and PF CL

Parameter	Specification	Test results
TF current lead		
Operation current	25.7 kA	25.7 kA
He mass flow rate at 25.7 kA	<2.37 g/s	(1.94±0.04) g/s
He mass flow rate at 0 kA	<0.78 g/s	(0.65±0.03) g/s
Heat load at 4.5 K end	3 W	(3.15±0.57) W
Joint resistance at clamp contact	<5 nΩ	~1 nΩ
Transition resistance at cold and warm end of HTS part	-	(19.77±0.55) nΩ
LOFA time at 25.7 kA	3 min	(14.7±0.3) min
Current sharing temperature	-	(74.3±0.9) K
PF current lead		
Maximum current	20 kA	20 kA
He mass flow rate at 20 kA	<1.8 g/s	(1.52±0.06) g/s
He mass flow rate at 0 kA	<0.78 g/s	(0.49±0.03) g/s
Heat load at 4.5 K end	3 W	(3.21±0.54) W
Joint resistance at clamp contact	<5 nΩ	(2.2±0.4) nΩ
Transition resistance at cold and warm end of HTS part	-	(17.9±0.7) nΩ
LOFA time at 20 kA	3 min	(14.7±0.4) min
Current sharing temperature	-	(73.6±0.9) K

Conclusion

- · KIT designed, manufactured and tested 26 HTS CLs for the satellite tokamak JT-60SA
- The design is based on that for the HTS CLs procured for the Wendelstein7-X stellarator which is under operation at IPP in Greifswald, Germany
- · All acceptance tests of the TF- and PF-CL were conducted without any problem and the results were within the expectations; all current leads behave very similar
- The experience of the personnel at KIT ensured a smooth execution of the project within the envisaged time and budget