Evaluation of thermal strain induced on components of Nb₃Sn strand during cool down Tomone Suwa¹, Tsutomu Hemmi¹, Toru Saito¹, Yoshikazu Takahashi¹, Norikiyo Koizumi¹, Vladimir Luzin², Hiroshi Suzuki³, Stefanus Harjo³ ¹Quantum and Radiological Science and Technology, Mukouyama 801-1, Naka-shi, Ibaraki, 311-0193, Japan (e-mail: suwa.tomone@qst.go.jp) ²Australian Nuclear Science and Technology Organisation, New Illawarra Rd, Lucas Heights, NSW, 2234, Australia ³Japan Atomic Energy Agency, Shirakata 2-4, Toukai-mura, Naka, 319-1195, Ibaraki. ### 1. Background Thermal strain on Nb₃Sn filaments is considered to largely influence on initial performance of a cable in conduit conductor(CICC). For prediction of the conductor performance, initial thermal strain of the Nb₃Sn strand was calculated from comparison of fully characterization (critical current, field, temperature, strain) with critical current of which strands were used for the CICC, but it was not directly measured. It is important to know thermal strain state in the Nb₃Sn strand to predict conductor performance. ### Objectives - ☐ Thermal strain measurement on ITER bronze-route Nb₃Sn strand. - \square Comparison measured results and calculated results from stress balance in the Nb₃Sn strand. #### 6. Conclusion - \Box Thermal strain of the Nb₃Sn strand for ITER CS in 10-300 K was measured by neutron diffraction in KOWARI at ANSTO. - \Box The compressive thermal strain was observed in Nb₃Sn and the Nb/Ta barrier. - \Box The thermal strain of Nb₃Sn in axial direction of the strand was -0.111% at 300 K and -0.209% at 10 K, respectively. - ☐ Transverse strain of Nb₃Sn was almost not changed from 300 K. - □ Calculated thermal strain of Nb₃Sn under stress balance in axial direction agreed with measured values if the strain was applied in less than 600 K. However, the thermal strain of Nb/Ta barrier was different between calculated and measured values. # Nb and Ta barrier Nb3Sn filaments in a matrix Cu stabilizer | <u>Item</u> | | Value | |---------------------|------------------|--------------| | Type | | Bronze-route | | Diameter | | 0.83 mm | | Number of filaments | | 17347 | | Barrier material | | Nb/Ta | | Barrier thickness | | 9 mm | | Cu/non-Cu ratio | | 1.0 | | | Cu stabilizer | 48.6% | | Volume | Bronze
matrix | 30.4% | | fraction | Filament | 17.6% | | | Nb barrier | 2.3% | | | Ta barrier | 1.1% | - Bronze-route Nb₃Sn strand for ITER CS was prepared for thermal strain measurement by using neutron diffractometer. - ☐ The barrier is composed by Nb and Ta. - ☐ After the heat treatment , Sn concentration is 1.0-1.5wt% in the bronze matrix. - Cu and bronze were dissolved, and filament and barrier were extracted from the strand as d_0 sample with stress free state. - \Box The thermal strain of Nb₃Sn was -0.111% at 300 K and -0.209% at 10K in axial direction, respectively. - ☐ The axial thermal strain was -0.062% and -0.232% at 300 K and 14 K in the Nb/Ta barrier respectively. - ☐ Compared with axial thermal strain, variation of the transverse thermal strain was very small in Nb₃Sn of the strand sample | 300 K | Axial | -0.111% | |-------|---------------|---| | | Trans. | 0.001% | | 10 K | Axial | -0.209% | | | Trans. | 0.018% | | 300 K | Axial | -0.061% | | | Trans. | 0.071% | | 14 K | Axial | -0.232% | | | Trans. | 0.118 | | | 10 K
300 K | 300 K Trans. 10 K Axial Trans. Axial 300 K Axial Trans. Axial Axial Axial | Thermal strain - An angular dispersive neutron diffractometer KOWARI at Australian Nuclear Science and Technology Organisation (ANSTO), was used to measure thermal strain. - ☐ Strain of the components in the samples is observed as peak shift in the diffraction profiles. - \square 2 $q \sim 90^{\circ}$ to get good accuracy of the profile. - □ Neutran diffraction measurement was carried out between 300 -10 K. - To evaluate the thermal strain, d-spacing of $\mathrm{Nb_3Sn}(321)$ and $\mathrm{Nb/Ta}(211)$ planes were measured on the strand sample and the d_0 samples (only filament and barrier sample). - Thermal strain $\varepsilon_{hkl}(T) = \frac{d_{hkl}(T)}{d_{0,hkl}(T)} - 1$ $\frac{d_{hkl}}{d_{0,hkl}} : d\text{-spacing of (hkl) plane}$ $d_{0,hkl} : d\text{-spacing of (hkl) plane}$ of d_0 sample - Axial stress was balance in the strand - Thermal strain was not induced in more than 600 K - Nb₃Sn, Nb, Ta → Elastic - Cu, bronze → Elasto-plastic - ☐ Thermal strain of the component *i* - $\varepsilon_i(T) = \varepsilon_s(T) \int_{0}^{T} \alpha_i(T) dt$ - e_i : Thermal strain in component i e_s : Thermal contraction of the strand Item - $\vec{a_i}$:Coeffient of thermal expansion of *i* - a_i . Coefficit of thermal expansion of - ☐ Elasto-plastic stress-strain curve of copper and bronze - Stress equilibrium on axial direction in the cross secsion of the Nb_3Sn strand V_i : Volume fraction of component i - $\sum V_i \sigma_i = 0$ - q_i , n_i : selected constants - ☐ On Nb₃Sn, behavior of calculation results agreed with measured values. - □ ~0.1% difference was found in Nb/Ta barrier between calculation and measurement.