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Abstracto High temperature superconducting magnetic energy storage (HTS SMES) is expectedto be utilized in power grid for dynamic power compensationwith low lossesand high energy storage
density during steadystate operation. Under transient operating conditions, especiallyin the caseof fast power switching process,AC lossesof the SMES will occur and lead to changesin equivalent
resistance,total inductance, and critical current distribution throughout the magnet In this paper, the dynamic performance of a 15kJ SMES has been analyzed basedon a co-simulation model of
MATLAB and COMSOL. The SMES elementis a customizedmodule by seltcode S-Function in MATLAB . A magnetothermal finite elementmodel basedon the PDE and Heat Transfer Modules of
COMSOL is built in the module. Thus, the operating statesof the SMES such as the distribution of the AC losses,magnetic flux density, critical current, maximum temperature increment, and the
fluctuation of inductanceand equivalent resistancehave beencomprehensivelymonitored in the power switching process

1. Features of the 150kJ SMES

3. Field-Circuit coupled Analysis
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