

Contribution ID: 663

Type: **Poster Presentation of 1h45m**

Feasibility Study of MgB2 Cable for Pancake Coil of Energy Storage Device

Monday, 28 August 2017 13:15 (1h 45m)

Since MgB₂ wires have been developed and commercially available, large scale cable assembled with MgB₂ strands is required for fabricating Superconducting Magnetic Energy Storage (SMES) devices. To form the MgB₂ superconducting material, heat treatment procedure is needed forming intermetallic compounds like Nb₃Sn. In general, magnets using those types of materials are constructed in simple processes, where the magnets are wound before heat treatment, namely "Wind and React (W&R)" method, and the heat treatment process is performed before coil fabrication, called "React and Wind (R&W)" method. The W&R process simplified initial development. The R&W process has several important advantages, such as reasonable heat treatment reactor size, simple insulation, compatibility with existing coil winding and SMES manufacturing, and dimensional control of the coil. Therefore, we have chosen to explore the R&W approach. For instance, the difficulty of applying the R&W process is that we should design the cables and magnets in which the strain must satisfy the acceptable level, only 0.24 % after heat treatment. To verify the applicability of the fabrication process, we performed the feasibility study based on the bending strain analysis of cable and double-pancake coil for several tens of kJ class SMES system. Calculation of curvature distributions based on a three-dimensional space curve theorem for both round cable and rectangular cross section cable like Rutherford type are investigated. They strongly depend on cable dimension parameters such as twist pitches, coil radius, and conductor former. The investigated results can allow us to construct the robust energy storage system using MgB₂ wires.

Acknowledgements: This work was supported by Advanced Low Carbon Technology Research and Development Program (ALCA) of Japan Science and Technology Agency (JST).

Submitters Country

Japan

Authors: Mr MIZUNO, Shinya (Sophia Univ.); YAGAI, TSUYOSHI (Sophia University); Mr TORU, Okubo (Sophia univ.); TAKAO, Tomoaki (Sophia University); MAKIDA, Yasuhiro (High Energy Accelerator Research Organization (JP)); SHINTOMI, Takakazu (KEK); HIRANO, Naoki (Chubu Elcetric Power); Mr ONJI, Taiki (Railway Technical Research Institute); Mr ARAI, Yuuki (Railway Technical Research Institute); TOMITA, Masaru (Railway Technical Research Institute); Mr KOMAGOME, Toshihiro (Mayekawa MFG Co.Ltd); Prof. MIYAGI, Daisuke (Tohoku University); Prof. TSUDA, Makoto (Tohoku University); HAMAJIMA, takataro (Tohoku Univ.); Mr MIZUOCHI, Sora (Sophia univ.); Mr KAMIBAYASHI, Masahiro (Sophia univ.); Mr TSUKADA, Kenichi (Mayekawa MFG Co.Ltd); Ms JINBO, Mana (Sophia univ.).

Presenter: Mr MIZUNO, Shinya (Sophia Univ.)

Session Classification: Mon-Af-Po1.06

Track Classification: E5 - Energy Storage - SMES