VICTORIA

UNIVERSITY OF WELLINGTON

TE WHARE WANANGA
O TE UPOKO O TE IKA A MAUI

iy

[183] Tue-Af-P02.11-01

25th International Conference on Magnet Technology Robinson Research Institute

RAI - Amsterdam, August 27t - September 15t, 2017

Optimising Rotor Speed and Geometry for an Externally-Mounted HTS

Dynamo
A.E. Pantoja, C.W. Bumby, A. Barnes, Zhenan Jiang, J.G. Storey, R.A. Badcock?

1 Robinson Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5046, New Zealand
Contact e-mail: chris.boumby@vuw.ac.nz

Dy n am O 'ty p e fl u X p u m p HTS Stator Tape HTS Tape Stator Yoke Stator Flux Ring
Composite —3——
®* HTS magnet colils cannot be operated Iin persistent  cryostat High Current /
mode. ! Connection ) E } @ - D
* Require DC current injection from external current  stator Ring 1 j oS N —

supply via metal current leads.

Conducting current leads bridge
temperature and cryogenic environment

— Parasitic heat load (conduction + dissipation)

® Alternative approach: HTS flux pump

Enables quasi-persistent current operation by developing :
a small (10 mV) time-averaged DC driving voltage | ‘ : Drive Shaft
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Cross-section of Flux pump showing iron rotor yoke, stator yoke and cryostat wall.
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Magnet Rotation Path

_ Rotor magnet i I
® Dynamo-type HTS flux pump employs mechanically- | or geometries . o

rotating permanent magnets to generate an AC emf, P 8 Servo Motor studied: - 3

. . . . e magnets t
which is partially rectified as magnet passes over | . . ; Tesnen

g g Cut-away diagram of experimental HTS dynamo test rig,

coated conductor tape showing stator yoke within composite LN2 bath and " 25 pith ! . 1y
— Behaves like a DC voltage source with internal  arrangement of external rotor. HTS stator tape is 12 mm | = = DU ~ <

resistance REBCO coated-conductor wire (Superpower). o Mo e ! ! I\
— For this work: stator width, w = 12 mm; Flux gap, d =7.5 = R T 4 magnets 6 magnets J magnets

Minimise parasitic heat load by placing all moving parts

OUTSIDE of cryogenic environment mm. Magnet dimensions were 25 mm X 12.5 mm X 6.3 mm,

_ Schematic of magnet path across stator wire.
and radial length to centre of magnets, r = 63 mm.

(Cryostat wall and rotor yoke omitted for clarity)

Different arrangements of equally-spaced

: : : Nd-Fe-B permanent magnets on rotor yoke.
— Excite HTS circuit through the cryostat wall

Origin of DC output N

A DC open-circuit voltage arises due to time-averaging of
the voltage waveform across the stator wire, ie: [ j
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Diagram showing
circulating eddy
currents flowing
around rotor magnet
as it passes over
coated conductor
wire. Non-linear
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AC waveforms

Plots of the time-dependent open-circuit voltage waveforms
V,c(t), shown as function of rotor angle. Data was obtained at 77
K, and is shown for each rotor geometry across a range of rotor
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DC output parameters as a function of rotor speed and magnet number.
Short-circuit current, |.., Is maximum current that can be delivered by

] SC)

dynamo. R, is effective internal resistance (due to AC losses).
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Rotor speed, o_, (rpm)

large currents into an HTS circuit, without penetration of the cryogenic envelope.

This type of flux pump behaves as a DC voltage source with open—circuit voltage, V,. and an internal
resistance, R, (due to dissipative losses arising from time-varying field interacting with DC current).
DC output arises from time-averaging of a partially-rectified AC voltage waveform (see [6]).

DC output voltage is directly proportional to frequency at which magnets cross stator, f = nw, ... /60
At rotor speeds below 1000 rpm, I . is independent of number of rotor magnets or speed.

See also: [184] Tue-Af-Po2.11-02 ‘Impact of Stator Ring Width on Output of a Dynamo-type HTS Flux Pump’; [185] Tue-Af-Po2.11-03 ‘Frequency Ramping Effects on a Dynamo-type HTS Flux Pump’




