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Measurement process 

•Diameters: 41mm 
•Height: 15mm 
Fabricated by TSMG processing 
The maximum trapped magnetic fields: 
GdBaCuO(1.47 T); YBaCuO(0.94 T) 

   The levitation force of the bulk sample was measured under 100 kPa, 60 kPa and 20 kPa, respectively. 
The measurement of levitation force was conducted both in the case of ZFC and FC. In ZFC, the HTS bulks 
were immersed in LN2 at a height of 60 mm. This is the first step and called as “the cooling of bulk”. Then, 
the scroll vacuum pump was used to evacuate the chamber to one of the expected pressure. This is the 
second step and it will last about 5 minutes. Finally, the HTS bulk was moved at a speed of 2 mm/s from a 
60-mm height to a 12-mm height above the PMG, and then returned to the height of 60 mm. The 
levitation force measurement in the FC condition is similar, except that the cooling height was changed to 
a 20-mm height above the PMG. 

 The experimental results further proved the phenomenon that a low pressure environment is helpful to increase levitation force 
of HTS bulks, which is exactly an extra advantage of the combination of HTS Maglev and evacuated tube.  

 Moreover, it is interesting to found that the same sized YBaCuO bulk is more sensitive to the pressure variation compared with 
GdBaCuO above the PMG. In the low pressure condition, the levitation characteristics of YBaCuO bulk were superior to those of 
GdBaCuO, Attributed to the increasing critical current density Jc and Tc difference.  

 This study finds a universal phenomenon and gives a better understanding of HTS bulks working under low pressure, which is 
meaningful for the application of the HTS Maglev-ETT system. 

Levitation force in ZFC and FC condition Changes in Levitation force under low pressure environment 

Fig. 7. Maximum levitation force of the YBaCuO bulk 
and GdBaCuO bulk at different pressures of 100 kPa, 
60 kPa, and 20 kPa in the case of ZFC and FC. 

The HTS Maglev-ETT System 
(The combination of high temperature superconducting 
maglev technology and evacuated tube transport) 
 
parameters 
Length: 45m 
Load capability: 300 kg @ 20 mm, 1000 kg @ 10 mm 
Maximum speed: 25 km/h (normal pressure); 50 km/h (low 
pressure) 
Vacuum degree: 1-0.1 atm 

  The high temperature superconducting (HTS) bulk is the core component of HTS maglev systems. For the potential application to evacuated tube 
transportation (ETT), it is necessary to recognize the loading capacity of the bulk under a low-pressure environment. Based on a home-made pressure-
reducing platform, we investigated the levitation force of two kinds of typical bulks, that is, the same sized YBaCuO and GdBaCuO, above a Halbach 
permanent magnet guideway under different pressure conditions. The levitation force in the cases of zero-field-cooling (ZFC) and field-cooling (FC) 
were measured and analyzed. Experimental re-sults show that the reduced air pressure can significantly improve the levitation force of the two kinds of 
bulks. The levitation force of YBaCuO and GdBaCuO has increased by 11.6% and 4.4% in the FC case, 20.3% and 13.7% in the ZFC case under 20 kPa 
compared with the atmospheric pressure (100 kPa), respectively. This universal phenomenon was explained by the increasing critical current density Jc 
of HTS bulks due to cooler liquid nitrogen under the low-pressure condition. It is interesting to find that the YBaCuO bulk was more sensitive to the 
pressure variation compared with the GdBaCuO bulk. This difference reflects the improvement extent of levitation force of HTS bulks with different Jc 
performance working in a low-pressure environment. 
Keywords: Levitation force, YBaCuO, GdBaCuO, Low pressure, Evacuated tube transportation 
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Fig. 4. Levitation force curves of the YBaCuO bulk and GdBaCuO bulk 

under the pressures of (a) 100 kPa, (b) 60 kPa, and (c) 20 kPa in the case 

of ZFC. 
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Fig. 5. Levitation force curves of the YBaCuO bulk and GdBaCuO bulk 

under the pressures of (a) 100 kPa, (b) 60 kPa, and (c) 20 kPa in the case 

of FC. 
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Fig. 6. Maximum levitation force of the YBaCuO bulk and GdBaCuO 

bulk at different pressures of 100 kPa, 60 kPa, and 20 kPa in the case of 

ZFC and FC. 
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under the pressures of (a) 100 kPa, (b) 60 kPa, and (c) 20 kPa in the case 
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Fig. 5. Levitation force curves of the YBaCuO bulk and 
GdBaCuO bulk under the pressures of (a) 100 kPa, (b) 
60 kPa, and (c) 20 kPa in the case of ZFC. 

Pressure 100 kPa 60 kPa 20 kPa 

  YBCO GdBCO YBCO GdBCO YBCO GdBCO 

ZFC (N) 120.5 121.7 130.4 128.2 145.2 138.4 

Increase  
ratio 

— — 8.2% 5.3% 20.3% 13.7% 

FC (N) 54.4 55.0 56.4 55.4 60.7 57.4 

Increase 
ratio 

— — 3.8% 0.7% 11.6% 4.4% 

Fig. 6. Levitation force curves of the YBaCuO bulk 
and GdBaCuO bulk under the pressures of (a) 100 
kPa, (b) 60 kPa, and (c) 20 kPa in the case of FC. 

TABLE I 
CAMPARISON OF THE MAXIMUM LEVITATION FORCE OF YBACUO 
AND GDBACUO IN DIFFERENT PRESURE AND THE INCREASE 
RATIO OF THE MAXIMUM LEVITATION FORCE COMPARED WITH 
100 KPA CONDITION IN THE CASE OF ZFC AND FC 
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Fig. 1. The photo of HTS Maglev-ETT test system. 

Fig. 2. Top views of the experimental HTS bulk 
samples. (a) YBaCuO, (b) GdBaCuO, both of 
which are divided to the four-fold growth 
sectors by two orthogonal growth sector 
boundaries.  

Fig. 3. The magnetic flux 
density distribution of the 
applied PMG along its 
transverse direction at a height 
of 12 mm and the schematic 
diagram of the measurement 
position and motion direction 
of the bulk in the experiments. 

Fig. 4. 
Photograph of 
the HTS maglev 
measurement 
system together 
with a home-
made pressure-
reducing 
platform. 
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