Induced Voltage Characteristics by Back Iron Effect for Electromagnetic Energy Harvester using Magnetic Fluid

Kang Won Lee, and Young Sun Kim

Department of Electrical and Electronic Engineering, Joongbu University, Goyang, 10279, South Korea

Introduction

- **Background**
 - Existing Concept of Energy Harvester
 - Constitution of Stationary Induced Coil and Moving Magnet
 - No Magnetic Circuit for Feedback of Magnetic Flux
 - Operation by Large External Vibration
 - Designed Energy Harvester
 - Implementation using Ferrofluid: Possibility for Low Frequency and Small Vibration
 - Adoption of Back Iron Yoke
 - Comparison of Electromotive Force (EMF) Characteristics for Energy Harvester with Air Yoke and Back Iron Yoke

EMF in Magnetic Circuit

- **Schematic Diagram**
 - \[E = \frac{N}{S} \left(\int_{A_t} A_z \ ds - \int_{A_s} A_z \ ds \right) \]
 - \[E = \frac{l}{S_a} \left(A_{t'} - A_{s'} \right) \]

- **Configuration of Experiment**
 - Shaker and Scope
 - Harvester with Air Yoke
 - Harvester with Back Iron Yoke

- **Ferrofluid**: Fluidity and Magnetic Property
- **Back Iron Yoke Effect**: Decrease Reluctance → Increase Magnetic Flux → Increase EMF

Experimental Setup

- **Supplementary Information**
 - Shaker: 0-300 rpm
 - Oscilloscope: GDS-2102A
 - PM: Nd Magnet
 - Enamelled wire: \(\phi = 0.4 \) mm
 - Ferrofluid: Ferrotec®

Experiment Results

- **Factors for Ferrofluid Volume and PM Flux**
 - **Variables for Experiment**
 - **Permanent Magnet Arrangement**

- **Instantaneous Values of Induced Electromotive Force**
 - **In Case of Air Yoke**
 - **In Case of Back Iron Yoke**

<table>
<thead>
<tr>
<th>Part</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnet</td>
<td>Dia. & Thickness</td>
<td>25 mm</td>
</tr>
<tr>
<td>Res. induction</td>
<td>220 mT</td>
<td></td>
</tr>
<tr>
<td>EFH1</td>
<td>Relative Perm.</td>
<td>2.59</td>
</tr>
<tr>
<td>Amount</td>
<td>41 ml</td>
<td></td>
</tr>
<tr>
<td>Iron core</td>
<td>Type</td>
<td>Steel 45C</td>
</tr>
<tr>
<td></td>
<td>Relative Perm.</td>
<td>1000</td>
</tr>
<tr>
<td>Resistance</td>
<td>160.3Ω</td>
<td></td>
</tr>
<tr>
<td>Inductance</td>
<td>74.3 mH</td>
<td></td>
</tr>
</tbody>
</table>

- **Comparison of RMS Value of the Electromotive Force according to Ferrofluid Volume and Magnetic Field**
 - **Air Yoke**
 - **Back Iron Yoke**

- **Ferrofluid based Energy Harvester can Apply to the System with the Small and Low Frequency Vibration.**
- **The Energy Harvester with Back Iron Yoke Generates Large EMF due to Abundant Flux Variation.**

Conclusion