Induced Voltage Characteristics by Back Iron Effect for Electromagnetic Energy Harvester using Magnetic Fluid Kang Won Lee, and Young Sun Kim

Department of Electrical and Electronic Engineering, Joongbu University, Goyang, 10279, South Korea

Introduction

Background

25th International Conference

on Magnet Technology

- Existing Concept of Energy Harvester
 - Constitution of Stationary Induced Coil and Moving Magnet No Magnetic Circuit for Feedback of Magnetic Flux
- Operation by Large External Vibration

Designed Energy Harvester

- Implementation using Ferrofluid : Possibility for Low Frequency and Small Vibration
- Adoption of Back Iron Yoke
- Comparison of Electromotive Force(EMF) Characteristics for Energy Harvester with Air Yoke and Back Iron Yoke

EMF in Magnetic Circuit

EMF in Closed Loop

Experimental Setup

Configuration of Experiment

Shaker and Scope

- Harvester with Air Yoke
- Harvester with Back Iron Yoke
- Ferrofluid : Fluidity and Magnetic Property

25 mm

220 mT

2.59

91 ml

1000

161.3Ω

74.3 mH

Steel 45C

Back Iron Yoke Effect : Decrease Reluctance \rightarrow **Increase** Magnetic Flux → Increase EMF

Energy Harvester

Magnet

EFH1

Iron core

Coil

 Details of Ferrofluid Harvester Property

Dia. & thicknes

Res. induction

Relative Perm

Relative Perm

Resistance

Inductance

Amount

Type

- Supplementary Information ✓ Shaker : 0-300 rpm
 - ✓ Oscilloscope: GDS-2102A
 - ✓ PM : Nd Magnet
 - ✓ Enameled wire: *φ* 0.4 mm
 - ✓ Ferrofluid : Ferrotec®

Experiment Results

Conditions for Ferrofluid Volume and PM Flux

Variables for Experiment

Factor	Model	Quan. & Mag.	Remark
Magnetic flux density	M1	220 mT	At the upper magnet surface
	M2	350 mT	
	M3	420 mT	
Ferrofluid - Volume -	F1	60 ml	Container volume : 182 ml
	F2	91 ml	
	F3	121 ml	

Permanent Magnet Arrangement

Instantaneous Values of Induced Electromotive Force

- ✓ External Vibration : 5 Hz
- Comparison of RMS Value of the Electromotive Force according to Ferrofluid Volume and Magnetic Field

- ✓ The EMF is increased in
- proportion to the magnetic field intensity. ✓ It is caused by decrease of
- sloshing motion due to stick ferrofluid to the permanent magnet.

- ✓ The EMF increases in proportion to the magnetic field intensity.
- ✓ The back iron effect increases the amount of magnetic flux and magnetic flux variation with respect to time.

Conclusion

- Ferrofluid based Energy Harvester can Apply to the System with the Small and Low Frequency Vibration.
- The Energy Harvester with Back Iron Yoke Generates Large EMF due to Abundant Flux Variation.

Aug. 27- Sept. 1, 2017, RAI, Amsterdam

Lab. For Electromagnetic System, Joongbu University