Optimal Design Methodology of Multi-Width HTS Magnet for Minimum Wire Consumption Min Cheol Ahn¹, Hongmin Yang¹, Kyungmin Kim¹, Jae Young Jang², and SangGap Lee², and Seungyong Hahn³

- 1. Department of Electrical Engineering, Kunsan National University, Gunsan, Korea
- 2. Spin Engineering Physics Team, Korea Basic Science Institute, Daejeon, Korea
- 3. Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea

- that of "one" pancake, while the rest of the pancakes still have substantial margin to their own I_c.

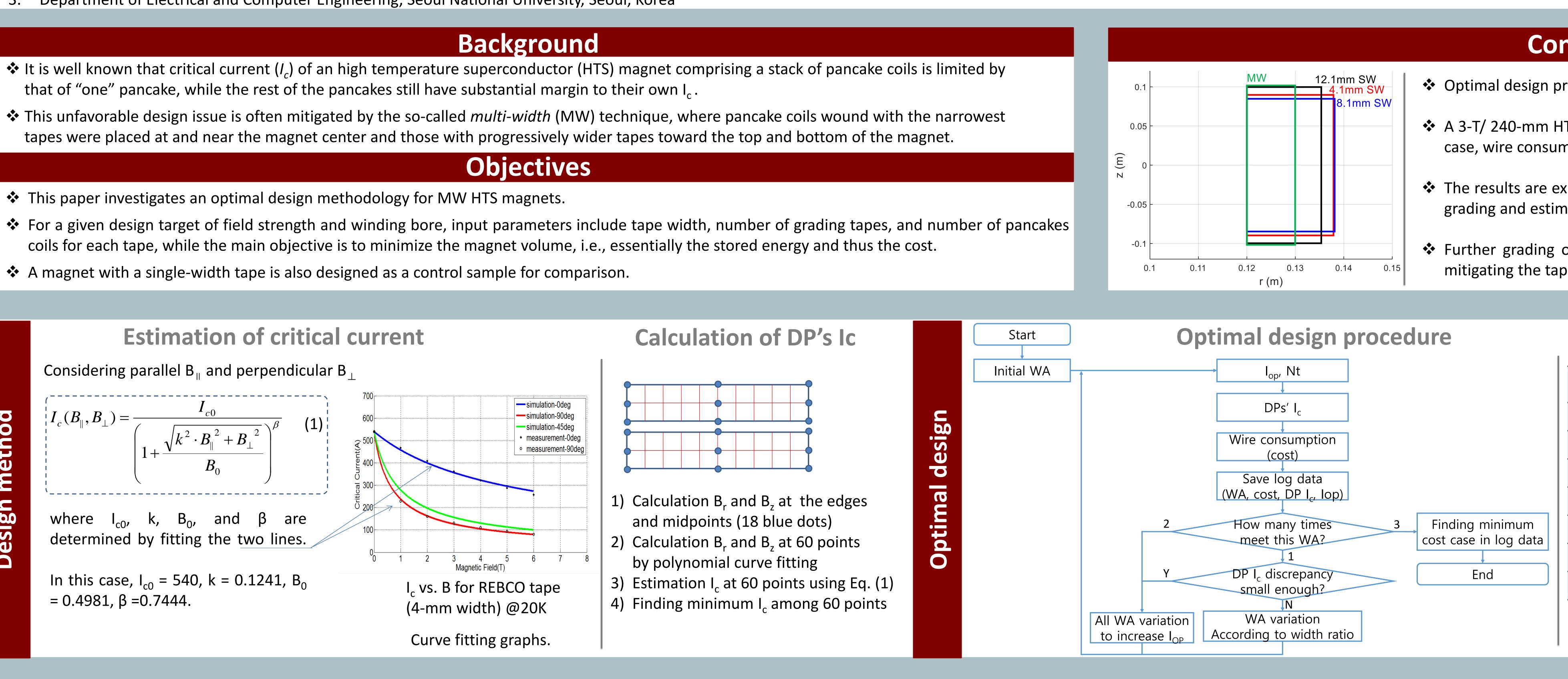
- This paper investigates an optimal design methodology for MW HTS magnets.
- A magnet with a single-width tape is also designed as a control sample for comparison.

Estimation of critical current

Considering parallel B₁ and perpendicular B₁

$I_c(B_{\parallel}, B_{\perp}) = \frac{I_{c0}}{\sqrt{1-1}}$	
$\int_{c} \left(\mathbf{D}_{\parallel}, \mathbf{D}_{\perp} \right)^{\beta} \left(\sqrt{k^{2} \cdot B_{\parallel}^{2} + B_{\perp}^{2}} \right)^{\beta}$	(1)
$\left 1 + \frac{\sqrt{N} - 2_{\parallel} + 2_{\perp}}{R} \right $	

od



J

Design

where I_{c0} , k, B_0 , and β are determined by fitting the two lines.

In this case, $I_{c0} = 540$, k = 0.1241, B_0 = 0.4981, β = 0.7444.

Case study of a 3-T 240-mm HTS magnet

# of DPs	Length (km)	I _{op} (A)	В ₀ (Т)	Width Arrangement (WA)	Starting case		4	.1-m	nm S	W		Length (km)		8.	1-m	ım S	W		Length (km)		12	2.1-r	nm	SW	,	Length (km)	
8	3.422	374.9	3.011	7 8 10 12	Initial	4	. 4	4	4	4	4	5.373	8	8	8	8	8	8	4.942	12	12	12	12	2 12	2 12	5.434	
10	3.274	313.7	3.007	6 6 7 8 10		4	5	6	7	9	11	4.223	6	6	7	8	10	12	3.468	5	5	6	6	8	12	3.862	
12	3.121	373.3	3.012	6 7 7 8 9 11	Process	5	6	7	7	7	9	3.423	6	7	8	9	9	11	3.290	5	6	7	8	9	10	3.488	
14	3.201	400.1	3.019	6 7 7 8 9 9 12		6	6	6	7	9	11	3.488	7	8	8	8	10	12	3.398	6	7	7	7	8	11	3.373	
16	3.173	382.4	3.028	6 6 7 7 7 8 9 11						•			•••	7	7	8	10	10	12	3.329	6	6	7	8	10) 12	3.468
18	3.235	415.8	3.027	6 7 7 7 7 8 8 9 12		6	6	6	8	9	10	3.753	7	8	9	9	10	12	3.390	6	7	8	9	9	11	3.290	
20	3.315	390.9	3.034	6 6 6 7 7 7 7 8 9 11		7	7	7	9	10	11	3.566	6	7	7	8	9	11	3.121	7	8	8	8	10) 12	3.398	
Mir	Minimum length case with respect to number of DPs.			6	7	9	9	10	12	3.485								7	7	8	10) 10) 12	3.329			
							8	10	10	11	12	3.620								7	8	9	9	10) 12	3.390	
						6	7	7	8	9	11	3.121								6	7	7	8	9	11	3.121	

Process of finding the optimal case with various starting cases.

Comparison with single-width magnet

Deverseter	Si	ngle-Wid	th	Multi-	
Parameter	4.1	8.1	12.1	Width	
Inner Diameter (mm)		24	40		
Target Field (T)			3		
Wire thickness (mm)		0.	12		
Operating temperature (K)		<	20		
Outer Diameter (mm)	275.76	276.24	270.72	259.92	
Height (mm)	179.4	169.4	199.4	203.4	
Number of DPs	20	10	8	12	
Operating current (A)	126.3	245.2	378.2	373.3	
Magnetic field (T)	3.009	3.012	3.002	3.012	
Total wire consumption (km) (4.1mm equivalent)	4.912	4.923	4.921	3.121	

Conclusion

Optimal design process of Multi-Width (MW) magnet was proposed and verified.

✤ A 3-T/ 240-mm HTS magnets, both MW and SW, was designed as a case study. In this case, wire consumption was reduced by 40% from 4.9 km (SW) to 3.1 km (MW).

The results are expected to be beneficial to determine the practical level of HTS tape grading and estimate a volume of an MW magnet.

Further grading of the tapes, say in every 0.5 mm, may be beneficial in terms of mitigating the tape's angular dependency in the magnet.

#				ngem P to up	•	,		Cost (km)					
1	8	8	8	8	8	8	648	591	525	452	369	255	4.94
2	6	6	7	8	10	12	439	342	364	378	455	428	3.47
3	6	7	8	9	9	11	387	409	445	492	406	375	3.29
4	7	8	8	8	10	12	486	550	490	393	458	418	3.4
5	7	7	8	10	10	12	515	409	416	552	465	417	3.33
6	7	8	9	9	10	12	467	493	554	477	462	415	3.39
7	6	7	7	8	9	11	397	451	378	398	397	373	3.12

Example of optimal design process; 3-T 240-mm case.